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Abstract

The dhole (Cuon alpinus) is a large canid at risk of global extinction. Information on the spatial
distribution of suitable range areas may aid in conservation planning, but to date no range-wide
distribution model exists for the dhole. We produced a multi-scale environmental niche model for
dholes covering 12 current range countries. Our objectives were to quantify the spatial distribution of
potential range as well as the relative probability of occurrence in identified areas. Potential dhole range
were identified primarily in three regions: in western India, in central India, and across the Himalayan
foothills through Southeast Asia. Most of the potential dhole range was identified in Southeast Asia,
and potential range in this region also had higher relative probability of dhole occurrence than in
regions. However, India was identified to harbor the highest proportion of potential dhole range among
the countries within our study region. Connectivity appears to be poor both among the core regions as
well as between suitable patches within each region. Dhole conservation may benefit from focusing its
effort to Southeast Asia and India, and coordination of conservation action among these two regions
should be a prioritized component of dhole conservation planning. We further highlight the value of
improving population viability on unprotected land, especially since we there seems to be a need of
improving connectivity among suitable range across different spatial scales. Finally, there seems to be a
need for more monitoring activities in the northern parts of dhole's historic distribution, in particular
areas within China.

Keywords: environmental niche model; maximum entropy; canidae, large carnivore; spatial
conservation planning; human conflict
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Introduction

The dhole (Cuon alpinus, Pallas, 1811), or Asiatic wild dog, is a large, wide ranging carnivore facing
global extinction. Dholes historically dominated large parts of alpine, temperate, tropical and sub-
tropical forests across most of Asia (Kamler et al., 2015). However, dholes are currently confined to
only 25% of their historical range, mostly within protected areas (Wolf & Ripple, 2017). The current
global population is estimated to consist of 2000-2200 adults, with continued population declines
projected (Kamler et al., 2015). Existing populations are small, isolated, and often exhibit severe
population fluctuations (Kamler et al., 2015; Li et al., 2020). Primary reasons for the declining
populations are habitat loss and fragmentation, persecution, prey depletion, interspecific competition
and diseases (Davidar & Fox, 1975; Gopi et al., 2012; Kamler et al., 2015; Srivathsa et al., 2019).
Given that the current threats to dhole population persistence are likely to increase in severity with
increased human populations, there is a strong need for concrete conservation actions to protect the
species from global extinction (Tananantayot et al., 2022).

Large carnivores, such as the dhole, are ecologically important and may function as important
conservation umbrellas or as flagship species (Dalerum et al., 2008; Thinly et al., 2021). They are
therefore important conservation targets (Gittleman et al., 2001). Large carnivores have large area
requirements but may still adapt to human modified landscapes (Chapron et al., 2014). However,
despite both past and present coexistence between humans and large carnivores, this group is highly
prone to conflict (Woodroffe, 2000; Madden, 2004). Large home ranges and their generally hyper
carnivorous diets frequently put them at odds with human activities, which may lead to legal or illegal
persecution (Woodrofte, 2000; van Eeden et al., 2018). However, conflicts are not only caused by
direct damage and threats but can also have cultural or socioeconomic dimensions (Treves & Karanth,
2003; Dalerum, 2021). Hence, carnivore conservation is a complex issue which includes both
biological, physiological, economic and social aspects (Madden, 2004, Macdonald & Sillero-Zubiri,
2004). This makes carnivore conservation highly resource demanding, and prioritization is therefore
necessary (e.g. Leader-Williams et al., 2010).

Considering the large area requirements of carnivores and the often spatially explicit nature of human-
carnivore conflict, well informed strategies for spatial priorities may be particularly important for the
success of large carnivore conservation and management (e.g., Eriksson & Dalerum, 2018). Such
priorities require a comprehensive knowledge of current and potential distribution ranges of species
under conservation or management concerns. Environmental niche models have proven to be
particularly useful tools to identify potential distribution areas (Elith & Franklin, 2013). Using
ecological knowledge of species-environment relationships, ecological niche models link species
occurrences with environmental data to understand and predict species distributions (Zhu et al., 2013).
Environmental niche models have been increasingly used to study a variety of topics within ecology,
evolutionary biology and environmental management, including biological invasions, species'
responses to climate change and spatial disease transmission (Zhu et al., 2013).

Among the multitude of proposed algorithms for environmental niche models, the MaxEnt algorithm
has shown to be a robust method to predict the potential geographic distribution of species (Phillips et
al., 2006; Phillips et al., 2017). The MaxEnt algorithm relies on maximum entropy to relate species
occurrences to a set of environmental predictors (Elith et al., 2006), and belongs to a class of
environmental niche models that only require occurrence data (Elith et al., 2011). Hence, inherent



issues with logistic models based on uncertain pseudo-absences are largely removed (Ward et al.,
2009). Despite a rapid development of new algorithms for occurrence only models, the MaxEnt
algorithm is still among the highest performing in terms of predictive accuracy, and its output is closely
correlated with empirical data (Valavi et al., 2021). Furthermore, it maintains high accuracy even with
relatively low number of occurrence records (Wisz et al., 2008). However, as with other machine
learning algorithms (Scowen et al., 2021), it tends to favor a level of complexity that renders it less
useful for mechanistic understandings of how the environmental characteristics influence the potential
for certain areas to be suitable as species ranges. For instance, many published MaxEnt models have
well over 100 parameters, which limit their usefulness in terms of evaluations of mechanistic
hypotheses related to how specific environmental characteristics influences potential species
distributions.

In this study, we applied the MaxEnt algorithm to a data set of dhole occurrences covering a large
extent of the species global distribution to create a map of potential range for the dhole, and to estimate
the relative suitability for dholes within potentially suitable areas. We used the data presented in Kao et
al. (2020) to adopt a multi-scale approach in which we used a coarse scale model to delineate potential
dhole range, and a finer scale model to evaluate the relative probability of dhole occurrence within
these areas. Our goal was to provide a quantitative assessment of the spatial distribution of potential
dhole range to aid in the spatial planning and prioritization for dhole conservation (Guillera-Arroita et
al., 2015). Our specific objectives were (i) to identify the spatial distribution of potential dhole range in
12 countries which all host dhole populations; and (ii) to quantify spatial variation in the relative
probabilityof occurence for dholes within identified potential range. Although endangered with a high
need of conservation action, previous distribution models for the species have all been done on regional
to local scales (Nurvianto et al., 2015; Thinley et al., 2021 Havmgller et al 2022; Tananantayot et al.,
2022). There is to date no peer-reviewed distribution model for the dhole that cover a large extent of
the species current range. Such a model would allow for an informed quantification of the spatial
distribution of suitable range, which is a requisite for any spatial prioritization of dhole conservation
action. Hence, although we have not managed to compile data across the species full historical
distribution (Kamler et al., 2015), we still regard our model to be a potentially valuable contribution
towards the conservation and management of this endangered large carnivore.

Methods
Study Region

We included 12 countries in our study region. We grouped these countries into three subcontinents
based on McColl (2005); China (including the mainland of People’s Republic of China — hereafter
referred to as “mainland China”), the Indian subcontinent (including Nepal, Bhutan, Bangladesh and
India), and Southeast Asia (including Myanmar, Lao People’s Democratic Republic — hereafter referred
to as “Laos”, Vietnam, Thailand, Cambodia, Malaysia, and Indonesia). Detailed descriptions of the
environmental and socio-economic characteristics of these regions are given in Appendix 1.

Environmental variables and model grain



We considered 24 environmental variables associated with climate, ecological characteristics,
geophysical characteristics and human environmental impact as the basis for our species distribution
models (Appendix 2; Supplementary Table S1). Of these, we retained 20 uncorrelated variables
(R<0.8) for the coarse scale and 19 for the fine scale model (Supplementary Table S2). All included
variables have been regarded as important for determining the distribution of wide-ranging large
carnivores (e.g. Swanepoel et al., 2013; Eriksson and Dalerum, 2018), and many have previously been
used to model dhole distribution over local and regional scales (Nurvianto et al., 2015; Thinley et al.,
2021; Havmgller et al 2022; Tananantayot et al., 2022).

Species distribution models, including ones fitted using the MaxEnt algorithm, are sensitive to grain
sizes, 1.e. the spatial scale at which environmental characteristics are linked to species observations
(Gottschalk et al., 2011; Song et al., 2013). Therefore, we defined both coarse and fine scale grain sizes
based on biologically meaningful information (Zarzo-Arias et al., 2019). We set the coarse scale grain
size to 8 km x 8 km (64 km?), which approximately corresponds to the average home range size
reported for dholes (53.4 km?, Acharya et. Al., 2010; Jenks et al., 2012; Srivathsa, et al., 2017). The
fine scale grain size was set to 2 km x 2 km (4 km?), which corresponds to estimated daily movement of
dholes (2.2 km, Grassman et al., 2005) and similar species, e.g., Eurasian wolf (Canis lupus lupus) (2.5
km, Kusak et al., 2005). We outlined the coarse scale model area to contain the full study region but
excluded cells with less than 50% of their area as land surface. We also excluded all islands smaller
than 25,000 km?., since we regard these islands too small to hold viable dhole populations. They could
therefore be demographic sinks and not relevant from a conservation perspective. The fine scale model
area was outlined as a subset of the coarse scale area, which only included areas identified as potential
dhole range from the coarse scale model (see below). With these definitions, the coarse scale model
region contained 240970 cells and the fine scale 390976 cells. We rescaled all environmental variables
to these two resolutions (Appendix 2). The GIS processing was done with QGIS (version 3.26,
http://www.qgis.org) and functions provided by the contributed package raster (version 3.5-15,
Hijmans, 2022) for the statistical environment R (version 4.2.1, http://www.r-project.org, hereafter
referred to as "R").

Dhole occurrence data

The dhole occurrence data was compiled during a workshop organized by the dhole working group of
the IUCN SSC Canid Specialist Group, the [IUCN SSC Conservation Planning Specialist Group,
Smithsonian Conservation Biology Institute, Kasetsart University and the Khao Yai National Park in
Thailand from 10-15 February, 2019 (Kao et al., 2020). The data set included the geographic locations
of 1,604 dhole observations made from 1996 to 2018 (Appendix 2; Appendix 3; Supplementary Table
S2; Supplementary Fig. S1a).

Spatial filtering of observation points has been suggested as a powerful mehtod to avoid potential
sampling bias influencing the model fitting process of environmental niche models (Boria et al., 2014).
We spatially filtered the raw observation data in two steps for each spatial scale before the occurrence
data were used for the modeling . First, we only used one observation per cell. This filtered the 1604
raw dhole observations to 567 cells for the coarse scale model and 1011 cells for the fine scale model.
Those records were further spatially filtered by only including observations at least 12 km apart, i.e.,



we only included one cell per each 3x3 cell neighborhood for the coarse scale and 6x6 cell
neighborhood for the fine scale. We used a filtering algorithm based on finding the maximum number
of observations while respecting a minimum nearest neighbor distance, implemented in the contributed
R package spThin (version 0.2.0, Aiello-Lammens et al., 2015). This yielded final occurrence data
consisting of 299 occurrence cells for the coarse scale (Supplementary Fig. 1b) and 291 cells for the
fine scale (Supplementary Fig. 1c).

Environmental niche modeling

We used the java implementation of MaxEnt version 3.4.4 (Philips et al., 2017) called from R using the
contributed packages dismo (version 1.3-3, Hijmans et al., 2021) and ENMeval (version 2.0.3, Kass et
al., 2021). MaxEnt implements a maximum entropy approach to the presence only class of
environmental niche models by associating species occurrences to environmental characteristics using
five different feature types: linear, quadratic, product, threshold and hinge features (Phillips et al.,
2006). This parameterization allows for the modeling of potentially complex relationships among
environmental characteristics (Elith et al., 2011). Although machine learning algorithms, like the
MaxEnt algorithm, generally favor more complex model solutions than likelihood-based algorithms,
over-fitting can still be problematic (Warren & Seifert, 2011). The MaxEnt software controls over-
fitting using a regularization parameter which penalizes variables with low contribution to the model.
Since a MaxEnt model with any given data can have a large number of alternative parameterizations
and regularization values, identification of the most parsimonious model and appropriate model tuning
is an important part of MaxEnt modelling (Merow et al., 2013).

For each spatial scale, we created a model set including all types of feature combinations, each
sequentially run over a set of regularization multipliers ranging from 0.1 to 10. From this set of 310
models, we identified the most parsimonious combination of feature types and regularization values
using Akaike’s Information Criterion corrected for small sample sizes (AICc) (Akaike, 1974). We
calculated the AICc values from raw model output where the sum of the log transformed raw values
were treated as equivalent to model likelihood (Warren & Seifert, 2011). Following Burnham &
Anderson (2002), we regarded models within 2 AICc units of each other as having equivalent empirical
support. We evaluated model performance using the AUC (Area Under a Receiver Operating
Characteristic-ROC—Curve) value (Fielding & Bell, 1997) as well as three model performance metrics
based on cross validation using a checkerboard method to separate our occurrence data into training
and testing sets (Kass, 2021): AUC,. which describes the ability of testing locations to distinguish
between background and presence locations), AUCgs which describes the difference in the ability to
distinguish between presence and background locations between training and test data (Warren &
Seifert, 2011), and ORyrp Which is the proportion of test locations with a value below the lowest value
of training locations (Kass, 2021). AUC values from 0.7 to 1 generally suggest that the model has
adequate predictive ability (Aradjo et al., 2005) whereas AUCy;yand ORypp values substantially above
zero indicate over fitting.

Binary classification of potential range



We used the complementary log-log (cloglog) transformation of the raw MaxEnt values, which is
bounded between 0 and 1, as the basis for summarizing the results (Phillips et al., 2017). To outline
potential dhole range, we converted the cloglog output from the coarse scale model into a binary layer
using the minimum cloglog score of any cell with dhole presence after the presence cells with the
lowest 10% in cloglog scores had been omitted. This threshold corresponded to a cloglog score of 0.24.
We therefore classified cells with cloglog scores at or above 0.24 to contain potential dhole range. The
outline of these areas was used as the model region for the fine scale modeling (see above). Within
potential dhole range, we evaluated the relative probability of dhole occurence directly as the cloglog
values derived from the fine scale model (Phillips et al., 2017).

Estimation of variable contributions

We used three methods to evaluate the relative contribution of each environmental variable to the
model of each spatial scale. First, we used a heuristic method which estimates the percent contribution
of each variable to the MaxEnt solution as the proportional contribution to the model training gain for
every iteration of the model fitting process (Phillips et al., 2006). Second, we calculated the regularized
training gain for each variable when used by itself. This value, hence, indicated how useful a variable
was for the model solution in isolation. Third, we used a jackknife procedure to evaluate how much
regularized training gain was lost when each variable was omitted compared to the model including all
variables. Thus, this method evaluated how much unique information each variable has among the ones
included in the model.

Results

Model selection and model performance

The optimal coarse scale model included linear, product and threshold features introduced through 97
parameters and the optimal fine scale model included linear and threshold features introduced through
87 parameters. Both models had a regularization multiplier of 1.5. The models were 13.49 (coarse
scale) and 5.16 (fine scale) AICc units above the model with the second lowest AICc scores (Appendix
2: Supplementary Table S3). Models of both scales showed high predictive accuracy, with AUC scores
of 0.96 (Supplementary Fig. 2a) and 0.82 (Supplementary Fig. 2b), respectively, and high average
AUC values based on the withheld testing data (coarse scale model: AUC,=0.93; fine scale model:
AUC,,=0.75). There were no indications of over fitting for either model, indicated by low differences
between the training and testing data sets in respective AUC scores (coarse scale model: AUC;=0.03;
fine scale model: AUC4=0.07), as well as minimum training presence omission rates close to zero for
both models (ORy1p=0.03 for both the coarse and the fine scale model, Appendix 2: Supplementary
Table S3).

Distribution of potential dhole range and relative probability of dhole occurrence



Potential dhole range was identified in three general regions; one along the west coast of India, one in
central east India, and one across the foothills of the Himalaya, which continued south through
Southeast Asia (Fig. 1). Most of the potential dhole range were identified in Southeast Asia (56%),
although a substantial part of the areas was also identified in India (33%, Fig. 2a). Bhutan had the
highest proportion of its land area identified as potential dhole range (80%), and all countries within
Southeast Asia had above or close to 30% of their land areas identified as potential range (Fig. 2b).
Bhutan as well as several countries within Southeast Asia had among the highest average relative
probability of dhole occurrence (Fig. 2¢), and the relative probability of dhole occurrence was on
average higher in Southeast Asia (0.38 + 0.24) than on the Indian subcontinent (0.36 £ 0.23) and in
mainland China (0.36 + 0.17).

Variable contributions

The two variables that contributed most to both the coarse and the fine scale models were land
protection status (coarse scale 37%; fine scale 59%) and temperature seasonality (coarse scale 26%;
fine scale 13%), with land protection status having a substantially higher contribution to the fine scale
than the coarse scale model (Fig. 3). Land protection was positively associated with dhole range
suitability, for both the coarse (Appendix 2; Supplementary Fig. S3a) and the fine scale models
(Appendix 2; Supplementary Fig. S3b), whereas temperature seasonality either showed a non-
monotonic (coarse scale: Appendix 2; Supplementary Fig. S3a) or bimodal relationship with dhole
range suitability (fine scale: Appendix 2; Supplementary Fig. S3b). Other important variables identified
by the heuristic test included tree cover (12%), elevation (6%), densities of medium-sized livestock
(4%) and annual mean temperature (3%) for the coarse scale (Fig. 3a), and human population density
(5%), annual precipitation (5%), precipitation of the wettest month (3%) and tree cover (3%) for the
fine scale (Fig. 3b). In line with these results, protected area was the most useful informative variable
on its own, as well as the variable carrying most unique information when combined with all other
variables, for both the coarse (Fig. 4a) and the fine scale model (Fig. 4b). Other variables identified as
having a relatively high importance on their own, as well as holding a relatively high amount of unique
information, included temperature seasonality and tree cover for the coarse scale model and
temperature seasonality, annual precipitation, and the different live-stock densities for the fine scale
model. Marginal response curves, explaining how each variable was related to the model output scores,
are given in Appendix 2: Supplementary Fig. S3.

Discussion

We identified three major regions containing the majority of potential dhole range; one along the west
coast of India, a second in central India, and a third across the foothills of the Himalayas which
continued Southeast through Southeast Asia. These regions largely coincide with earlier studies (e.g.
Thinley et al., 2021; Tananantayot et al., 2022). However, these three regions are not directly
connected, and particularly the central Indian and the eastern region appear to contain heavily
fragmented patches of suitable areas for the dhole. Hence, we believe that our study points to the
importance of identifying and securing dispersal corridors among potential range areas for dhole range



management (e.g. Rodrigues et al., 2022). Growing environmental problems coupled with a shortage of
financial resources to address them require rigid and informed priorities for conservation investment
(Wilson et al. 2006). While previous studies using environmental niche models for the dhole has been
conducted over local to regional scales (Nurvianto et al., 2015; Thinley et al., 2021; Havmgller et al.,
2022; Tananantayot et al., 2022), our model included major parts of this species range. Hence, although
it may have had somewhat lower predictive accuracy on local scales compared to models trained on
only a subset of the region included in this study, our approach enabled us to do large scale
comparisons among regions and countries that could potentially host this endangered carnivore. Hence,
our modeling approach provide important information for guiding future conservation action of this
species.

We identified most of the potential dhole range in Southeast Asia, which also had slightly higher
average probability of occurrence that mainland China and the Indian subcontinent. However, India
contained the largest proportion of potential dhole range among any of the individual countries. The
high importance of India was similarly identified by Kamler et al. (2015) and Srivathsa et al. (2020),
who suggested that India is the range country that harbors the largest dhole population. On a smaller
spatial scale, Cambodia, Malaysia and in particular Bhutan stand out as countries with very large parts
of their territories potentially suitable for dholes. All of these countries, together with Thailand, also
have among the highest relative probability of occurrence. Hence, our study partly agrees with the
findings of Tananantayot et al. (2022), who identified Cambodia, Malaysia and Laos as strongholds of
dhole habitat within Southeast Asia, and with Thinley et al. (2022), who found that dholes were
distributed across all 20 districts of Bhutan. Historically, dholes were distributed throughout Sumatra
and Java, in Indonesia (Kamler et al., 2015), but today their distribution on these islands is heavily
reduced (Havmgller et al., 2022). This study found more potential range in Sumatra compared to Java,
and the greater distance to the mainland populations raises further concerns for the future of dholes on
Java. Our model identified a limited distribution of potential range in mainland China. Dholes have
been observed in the northwest of China and occasional observations have been reported from isolated
sites in the Kunlun Mountains, the Karakoram Mountains, the Qilian Mountains and the Altun
Mountains during the past two decades (e.g., Riordan et al., 2015; Xue et al., 2015). These
observations may represent relict populations that are adapted to arid and semi-arid deserts and alpine
habitats from Central Asia to northwestern China. These are quite different habitat types from those
found on the Indian subcontinent and in Southeast Asia, and the demographic responses to
environmental variation ,including human persecution, may have different in these northern regions
compared to more tropical areas.

Many forests in Southeast Asia are largely empty of large mammals due to human persecution
(Steinmetz et al., 2014; Phumanee et al., 2020). Thus, our model may have identified potential dhole
range in forests where dholes have been extirpated. For example, a snaring crisis in eastern Indochina
(Laos, Cambodia, and Vietnam) has resulted in the recent extirpation of tigers and leopards from these
countries despite suitable forests and prey still occurring there (Rasphone et al., 2019; Rostro-Garcia et
al., 2023). Similarly, dhole numbers and distribution in eastern Indochina are greatly reduced and
fragmented in this region because of indiscriminate snaring. Therefore, dholes are absent from many
areas of this region. Because our model did not consider the impacts of widespread indiscriminate
snaring, the potential for dholes to inhabit potential dhole range identified in eastern Indochina may be
limited, at least until the current snaring crisis has been curfed. Similarly, since we lacked reliable prey



densities across appropriate spatial scales we did not include prey abundance in our analyses. We
recognize that both human persecution and prey abundance are key variables determining the
distribution of carnivores (Dalerum et al., 2008), including dholes (Thinley et al., 2021; Tananantayot
et al., 2022). However, by not including these variables, environmental niche models can effectively be
used to explicitly identify areas where carnivore distribution is limited not by habitat suitability, but by
persecution of the carnivores themselves or by persecution of their prey (e.g., Eriksson and Dalerum,
2018). In particular, range limitations imposed by humans killing dholes and their prey require further
quantification (e.g. Everatt et al., 2019), and we suggest that combining environmental niche models
with prey abundance data may be a fruitful way of doing so (e.g., Thinley et al., 2021; Tananantayot et
al., 2022).

The three identified regions of potential dhole range are geographically separated, and our models also
suggest that two of the three regions appear to be internally fragmented. Similarly, Tananantayot et al.
(2022) also noted a heavy fragmentation of suitable dhole range within Southeast Asia, and Rodrigues
et al. (2022) made similar observations for India. For species which only remain in small populations,
such a lack of population connectivity can be very detrimental for long-term population persistence
(e.g. Finnegan et al., 2021). In South Africa, for instance, the poor connectivity of sub-populations of
the African wild dog (Lycaon pictus), a species which share many characteristics with the dhole, led to
the drastic decision of creating an artificial meta-population in which animals were actively
translocated among carefully selected sites to maintain viable sub-populations (Mills et al., 1998). This
has been at least a partial conservation success (Nicholson et al., 2020), which highlights the
importance of maintaining demographic connectivity for species in fragmented landscapes. While we
do not believe that an artificial meta-population approach may be realistic for the dhole across Asia, we
suggest that connectivity both between and within regions containing suitable dhole habitat may be
critical for the long-term survival of the species. Such connectivity must, by definition, focus largely on
matrix habitats outside protected areas, which re-iterates earlier suggestions that improving

connectivity among population strongholds may yield significant conservation benefits (Prugh et al.,
2008).

Of the evaluated environmental variables, land protection and temperature seasonality were important
for both spatial scales. While the level of complexity in our selected models, i.e. 97 parameters for the
coarse scale and 87 for the fine scale model, prevents us from drawing any detailed conclusions
regarding how these two variables influence dhole distribution, we still regard their importance
informative. Protected land was positively associated with dhole range suitability. While we recognize
that this relationship may partly have been caused by sampling bias, it does agree with previous
suggestions that the persistent dhole populations are largely restricted to protected land (Kamler et al.,
2015; Thinley et al., 2021). Since livestock density was also an important variable, human-dhole
conflict may be a limiting factor for dhole distribution, similar to the situation for several other large
carnivores (Srivestha et al 2020, Thinley et al., 2021, Ghimerey et al 2023). Preserving viable
populations of wide-ranging carnivores within protected areas is usually not viable (Finnegan et al.,
2021), which further highlights the necessity of focusing dhole conservation on unprotected land.
Temperature seasonality also had a high influence on both scales, but with either non-monotinic or
bimodal relationships with dhole range suitability. Temperature seasonality may influence almost all
aspects of terrestrial ecosystems (Lisovski et al., 2017), and the observed relationships with range
suitability highlight the complex effects climate may have on species distributions. However, we
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suggest that the importance of temperature seasonality largely reflects the optimal environmental
conditions for this species, but that these optimal climate conditions may be conditioned on local
factors such as prey availability and competition. The relative importance of the other environmental
variables differed between the two scales. The importance of different environmental characteristics as
well as the scale dependencies observed in the relative importance of different variables highlight the
complexities involved with defining a species environmental niche, espetially for species with broad
niche tolerances.

We recognize that our observation data was biased towards tropical areas, and that we had an
extremely limited number of dhole observations from mainland China. Despite our rigid spatial
filtering, this could have caused our model to discriminate against identifying potential range areas in
the northern parts of the species historical distribution. We recognize that the bias in observations
towards tropical regions could have been caused by prioritizing field efforts to areas where a species is
most likely to be observed (Guillera-Arroita, et al., 2015). If true, we argue the observations we used to
train the models may reflect at least a large portion of the current distribution of the dhole, albeit not it's
full historical one. For instance, Kamler et al (2015) reported widespread and long running persecution
campaigns against carnivores in the northern regions of dhole historic range, and that dholes likely
disappeared from large areas of central and southern China during the 1980s and early 1990s. Hence,
we suggest that our model likely represent a fair quantification of the spatial distribution of areas
suitable for the dhole. None the less, we propose to use regional models for smaller scale applications.
We also suggest that dynamic scale optimization, which have been used for instance for brown bear
(Ursus arctos) and snow leopards (Panthera uncia) (Mateo-Sanchez et al., 2013; Atzeni et al. 2020;
but see McGarigal et al., 2016), may be a useful method to further improve the spatial accuracy of
range predictions for species with very broad, or even plastic, habitat tolerances such as the dhole. We
also encourage further studies focusing quantifying the distribution status of dholes in the northern
parts if its historical distribution, including China, as well as studies aimed at identifying the ecological
requirements of dholes in these northern regions.

Apart from the potential sampling bias, we offer some additional caveats to our study. First, after
appropriate spatial filtering we had a relatively limited sample sizes of dhole occurrences, which
corresponded to only approximately 1 out of 1000 cells having had a dhole occurrence. However,
MaxEnt has been regarded as robust to limited sample sizes (Wisz et al., 2008), and sampling biases
associated with spatially un-filtered observations may decline the performance of environmental niche
models more than training the models on a more limited number of filtered observations (Boria et al.,
2014). Second, our observations had a large time span, including data collected over a period of more
than 20 years. There may therefore have been a spatio-temporal mismatch between the observational
data and some of the environmental characteristics. However, grouping the observational data into
shorter periods would lead to further reductions in sample sizes, which means that models on
temporally pooled data likely are the most informative. Additionally, the snaring crises in eastern
Indochina has resulted in local extinctions of apex carnivores, including dholes, in the region.
Therefore, dholes may not occur in seemingly suitable areas due to excessive poaching by humans.
Finally, highlight that the MaxEnt algorithm, just as many other machine learning algorithms, are
subject to both conceptual and data related issues which may cause problems both in model predictions
and model interpretations (Aratjo & Gusian, 2006; Varela et al., 2014). We have tried to minimize
these issues by making biologically justified choices of the environmental variables and the model
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grain,. We have also used objective criteria in our a rigorous model selection approach (Warren and
Siefert, 2011) and the decision of a cut off point to delineate potential range. We therefore believe that
the decisions behind our models were based on biological information and objective analytical criteria,
at least as far as was possible with the information at hand.

To conclude, potential dhole range were identified in three disparate regions, and connectivity appear
limited both among and within these regions. Hence, we suggest that conservation action may benefit
from focusing on activities in the three identified regions, but also on actions aimed to understand and
improve connectivity among dhole populations. Since the majority of potential dhole range was
identified in Southeast Asia, and countries within this region also had a higher proportion of their total
land area identified as potential dhole range, special emphasis may be given to dhole conservation in
central and Southeast Asia. However, India was identified as the country which harbors the highest
proportion of potential dhole range among any of the individual countries, which agree with previous
suggestions that India likely also harbors the largest proportion of the global dhole population.
Coordinating conservation efforts among regions in India and Southeast Asia could subsequently be a
key aspect of further dhole conservation planning. We subsequently encourage trans boundary
conservation initiatives integrating areas in southern China, Myanmar, northeast India, Nepal and
Bhutan. Our study also highlight the need for more monitoring and assessments of dhole population
status and restoration potential in the northern parts of its historic distribution, including in mainland
China. Finally, we suggest that focusing dhole conservation on population persistence on un-protected
land may be key to the long-term population viability of this species, both by improving connectivity
among highly suitable patches but also by avoiding issues of maintaining viable populations of wide-
ranging species within restricted protected areas.
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