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Abstract

Wild aquatic birds are recognized as the natural reservoir of avian influenza A viruses (AIV), but across high and low
pathogenic AIV strains, scientists have yet to rigorously identify most competent hosts for the various subtypes. We
examined 11,870 GenBank records to provide a baseline inventory and insight into patterns of global AIV subtype diversity
and richness. Further, we conducted an extensive literature review and communicated directly with scientists to accumulate
data from 50 non-overlapping studies and over 250,000 birds to assess the status of historic sampling effort. We then built
virus subtype sample-based accumulation curves to better estimate sample size targets that capture a specific percentage
of virus subtype richness at seven sampling locations. Our study identifies a sampling methodology that will detect an
estimated 75% of circulating virus subtypes from a targeted bird population and outlines future surveillance and research
priorities that are needed to explore the influence of host and virus biodiversity on emergence and transmission.
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Introduction

The recent emergence of zoonotic avian influenza H7N9 in

China [1] and H5N8 in South Korea [2] has highlighted the need

to understand the genetic and phenotypic diversity of avian

influenza viruses (AIVs), including those of wild bird reservoirs,

beyond the traditional focus on highly pathogenic avian influenza

(HPAI) strains. Influenza A virus is a major pathogen from a

public, veterinary, and wildlife health perspective, yet there are no

comprehensive reviews of AIV subtype diversity in birds and the

evolutionary drivers of virus diversity are not well understood.

Diversity exists within each of the eight genetic segments of the

influenza A genome and between the different combinations of

those segments that arise from reassortment events. Our focus is

on the different combinations of the hemagglutinin (HA) and

neuraminidase (NA) genetic segments (hereafter referred to as

subtype diversity), and the number of unique HA and NA

combinations (hereafter referred to as subtype richness), derived

from available surveillance data. An inventory of subtype diversity

and richness is a first step towards understanding what drives virus

richness, which may help predict emergence events [3,4].

Species accumulation curves are powerful tools in ecology [5],

but have only recently been introduced for use in pathogen

research, with one study of virus diversity [6]. Ecologists use

accumulation curves to compare species richness among locations

when sampling efforts are dissimilar, which is the norm for global

AIV surveillance in wild birds [7]. With 16 known HA subtypes

and nine NA subtypes recorded in wild birds, there are 144

possible HA/NA combinations. The suite of 144 possible AIV

subtypes makes AIV an excellent candidate to evaluate the utility

and limitations of sample-based accumulation curves towards

estimating plateaus of virus richness and sampling targets. We

employed these curves, acknowledging their limitations, to

examine reported differences between subtype richness for large

surveillance collections (arbitrarily defined as those with at least

5,000 birds and five sampling periods).

The purpose of this research is to describe the current global

diversity of AIV subtypes, explore patterns of virus subtype
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richness, and probe the benefits and limitations of sample-based

accumulation curves to study AIV subtype richness in general.

Methods

a. GenBank
On 25 September 2012, we downloaded 11,870 distinct avian

records with subtype data (HA and NA gene segments) from the

Influenza Virus Database (http://www.ncbi.nlm.nih.gov/

genomes/FLU/Database/nph-select.cgi?go = database) in Gen-

Bank [8], date collected from 1902 through 2012. Records were

classified into wild (including migratory birds), domestic (including

poultry and farmed), feral, captive (including birds in trade, in

zoos, and pets) or unknown, based on a variety of resources

including GenBank records, GenBank linked publications, sam-

pling location, and species distributions. Flyways were defined

according to the North American Flyway Directory [9] and a

country-based division into North America (USA and Canada

only), Latin America, Europe, Africa, Asia, and Australasia. Maps

were created in ArcGIS 9.3 (ESRI, Inc.) and Photofiltre 6.5.1.

We used the GenBank data to examine the relationship between

the detection of a particular AIV subtype from domestic birds and

host range of that subtype in wild birds (host genus richness). We

used a generalized linear model with a binomial distribution and a

logit link function to calculate the odds ratio of isolating a

particular subtype in domestic birds (presence in domestic birds)

based on observed wild bird host genus richness. We adjusted for

effort by including the number of GenBank records for each

subtype (effort). Statistical analysis and figures were completed in

R version 2.15.3 [10]. Thus, for each HA/NA subtype we

modeled:

f(presence in domestic birds) = a + b1 (wild bird host genus

richness) + b2 (effort).

b. Modeling subtype richness
We collected published and non-published surveillance efforts

that non-discriminately tested for AIV subtype. Many surveillance

programs and studies did not meet the criteria, such as those that

screened samples by real-time reverse-transcriptase PCR (RT-

PCR) and only subtyped those samples that tested positive for

specific subtypes (e.g. H5 or H7). Full descriptive information

(including associated references, location, prevalence, detected

AIV richness, sampling and testing methodology, number of

sampling periods, and sample years) for each of these studies can

be found in the electronic supplementary material (Supplementary

Tables S1 and S2). Location, year of sampling, and authorship

were tracked to avoid duplicate reporting, resulting in non-

overlapping studies from the Northern Hemisphere (n = 41) and

the Southern Hemisphere (n = 9). These studies relied on virus

isolation or RT-PCR methods for AIV detection in cloacal, fecal,

or tracheal samples. Virus isolates were further characterized by

HA or NA inhibition assays, subtype specific RT-PCR, or by

sequencing the HA and NA gene segments of the virus isolate.

Viruses partially subtyped (those with only HA or NA subtype)

were not included in the analysis.

i. Sample-based accumulation curves. Studies with at

least five sampling periods and 5,000 birds tested overall were

identified and nonparametric AIV subtype richness was predicted

for each study (Table1). The baseline effort measure (5,000 birds)

was established to focus on studies with the largest comparable

sample sizes. We restricted the sampling periods to maintain

consistency of effort among studies in addition to sample size, and

to limit the analysis to a manageable number of major studies. We

also predicted cumulative unique subtype richness from GenBank

by year from 1959 to 2012.

We used EstimateS v 8.2.0 [11] to generate a presence-absence

accumulation function of subtypes and calculated the nonpara-

metric estimate of subtype richness with 95% confidence intervals

using the Chao2 estimate and 50 randomizations with replace-

Table 1. Overview of seven studies with at least 5,000 birds collected over at least five sampling events.

Location (author,
year)

AIV richness/
sample size
(per 1000) Analysis method Sampling period Bird families (positive/total, % positive)

Portugal [51] 20/5691 (3.5) Cloacal & oropharyngeal + mRT-PCR +
isolation + sequencing

2005–2009 (year-round) Total (93/5691, 1.63%)

Mongolia1 28/5831 (3.9) Fecal sample + isolation + HI & NI test
+ RT-PCR + sequencing

July 2009–October 2012
(May, Jun, Jul, Aug, Sep,
Oct)

Anatidae (80/5731, 1.4%); Laridae (0/100, 0%)

Egypt2 [50] 17/6070 (2.8) Cloacal swab + RT-PCR + isolation +
HI & NI test + sequencing

2003–2007 (Sep–Feb) Anatidae majority (9.4%)

Canada, Alberta [34] 44/9195 (4.8) Cloacal3 + isolation + HI & NI test 1976–1983 (Aug) Anatidae majority (2275/9195, 24%)

Sweden [14] 74/18645 (4.0) Cloacal swab + real-time RT-PCR +
isolation + HI & NI test + sequencing

2002–2009 (Mar–Dec) Anas platyrhynchos (2463/18645, 13.2%)

Europe4 29/24516 (1.2) Cloacal swab + real-time RT-PCR +
isolation + HI & NI test

1998–2005 (year-round) Total (612/24516, 2.5%); Anas platyrhynchos (325/
4398, 7.4%)

Taiwan5 [37] 46/44786 (1.0) Fecal sample + isolation + HI & NI
test + RT-PCR + sequencing

1998–2011 (year-round) Anatidae (229/20812, 1.1%); Shorebirds (3/6435,
0.05%); Laridae (2/617, 0.32%); Ardeidae (2/825,
0.24%); Other birds (1/598, 0.17%)

1Unpublished data provided by Martin Gilbert 10 February 2013.
2Richness estimated based on data thru 2007, population prevalence based on data through 2009.
3Sampling method was not reported but based on historical sampling patterns suggest it was cloacal.
4Provided by Vincent Munster 21 December 2012. These data excluded Ottenby Mallard data reported under Sweden.
5Extended data provided by Meng-Chu Cheng 12 November 2012. Bird families based on published data from Cheng et al. 2010.
Positive samples used to calculate prevalence (positive/total) may not all have been fully subtyped.
doi:10.1371/journal.pone.0090826.t001
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ment [6]. Bias-corrected Chao2 was calculated unless the

coefficient of variation for the incidence distribution was less than

0.5, in which case Classic Chao2 was calculated. We applied

Chao’s nonparametric estimator of sufficient sampling to calculate

the minimum number of birds necessary to detect 75% of the

estimated asymptotic subtype richness [12]. A 75% target was

selected because reaching the asymptote is problematic [13].

Datasets are staged on the Knowledge Network for Biocomplexity

repository (http://doi.org/10.5063/F1HT2M7Q).

ii. Drivers of AIV richness. We examined the attributes of

the 50 studies and identified variables associated with richness that

could be reliably extracted and analyzed as covariates. Our

attempts to isolate measures of host diversity (percentages of

Anseriformes and Charadriiformes) were hampered by data

availability reducing the number of studies to 41, but we were

able to extract AIV prevalence and duration of study (years). We

used linear mixed models (R library lme4, function lmer) to

examine the effects of interactions and to estimate the variance of

subtype richness associated with region and selected the best

model based on Bayesian Information Criterion (Supplementary

Table 3).

c. Sampling methods and ethic statements for data
provided by co-authors

Samples from Sweden were collected from wild ducks at an

important stopover site in the island of Öland (56u129N 16u249E)

located in the Northwest European flyway [14]. Breeding grounds

of the duck populations using the site are Baltic countries and

Northwestern Russia [15]. Ducks were caught using a live-duck

trap and all handling of birds was performed by trained

ornithologists from Ottenby Bird Observatory. Samples were

collected in transport media [16] and kept frozen at 270uC until

analysis [17]. The sampling protocol was approved by Linköping

Animal Research Ethics Board (permit numbers 8–06, 34–06, 80–

07, 111–11, 112–11) in accordance with national legislation.

In the European Union, expert ornithologists trapped birds

using duck decoys, duck traps, wader funnel traps, mist nets, clap

nets, cannon nets, or Helgoland traps. The majority of samples

were obtained from migratory birds during fall migration at long-

term sampling sites in the Netherlands [18]. Cloacal swabs were

collected using sterile cotton swabs and stored in transport

medium [16] and shipped to the laboratory where they were

stored at 280uC for analysis. The handling of birds within the

European Union study was in accordance with national and

international guidelines that were approved by an independent

Animal Ethics Committee of the Erasmus Medical Center

(Stichting DEC Consult) under permit number 122-09-20.

Mongolian sample collections focused on environmental fecal

samples, negating the need for national permits for the capture

and handling of wild birds. Sampling took place on state-owned

land in 27 locations in the East region of Mongolia, four in the

North-Central region and three in the West region, based on the

nomenclature used in Gilbert et al. 2012 [19]. The project was

approved by the University of Minnesota, Institutional Animal

Care and Use Committee (Protocol 1006A84613). Work was

completed under the authorization of the Mongolian State Central

Veterinary Laboratory.

Results

a. Subtype diversity and richness reported in GenBank
In the 1990s the number of GenBank submissions for AIV

viruses with fully sequenced HA and NA genes began to increase.

It peaked in 2007, and since that time there has been a steep drop

in the number of wild bird sequences deposited and a similar but

less sustained drop in the number of poultry sequences deposited

(Supplementary Figure S1). A total of 117 HA/NA subtype

combinations have been recorded in the Influenza Virus Database

for all birds, wild and domestic.

i. Subtypes unique to bird orders, families, and

genera. In 4,163 wild bird AIV sequences, 112 subtypes were

identified (Supplementary Table S4), of which 49 (44%) were also

found in domestic birds. Five subtypes not observed in wild birds

were H6N7 from a domestic goose, H9N8 from a chicken and

unknown duck species, and H8N2, H8N7, and H15N8 found in

unknown ducks (see Supplementary Table S5 for a list of specific

subtypes within each bird order).

The highest richness of subtypes from wild birds came from the

order Anseriformes (n = 101) including 33 subtypes that were not

submitted from any other bird order. All of these subtypes were

found in wild birds of the family Anatidae and eight were shared

with domestic birds (Supplementary Table S6). Charadriiformes

had 70 subtypes, 10 of which were unique to this order in wild

birds (Supplementary Table S7). One subtype, H15N6, was only

found in Procellariiformes, sequenced from a shearwater sp.

collected in Australia in 1979. Unique AIV subtypes were not

found from any other order of wild birds (Supplementary Table

S5). The remaining 68 subtypes were isolated from more than one

order (61% of the 112 subtypes). Of these, all subtypes were found

in Anseriformes (primarily from birds of the family Anatidae (Anas

spp.)), 60 were also found in Charadriiformes, and 1–7 were found

in other bird orders (Supplementary Table S5).

Based on those submissions for which species information was

available, the top five wild host species for subtype richness (n)

were: Mallard - Anas platyrhynchos (89), Ruddy Turnstone - Arenaria

interpres (45), Northern Pintail - Anas acuta (43), Northern Shoveler -

Anas clypeata (35), and Blue-winged Teal - Anas discors (33).

ii. Subtypes found in wild and domestic birds. Of the 49

subtypes found in both wild and domestic birds, 46 (94%) were

found in wild Anseriformes, and 37 (76%) were isolated from wild

Charadriiformes (Figure 1a). Host genus richness by subtype for

3,628 records was compiled (Figure 1b). GenBank data was not

conclusive enough to definitively identify the taxonomic host genus

on 13% of the wild bird records. The model minimized differences

between the observed and expected occurrence of a subtype in

domestic birds under the Hosmer-Lemeshow goodness-of-fit test

(p = 0.586) [20]. After adjusting for sampling effort for each

subtype, we estimate that for every additional wild bird genus from

which a subtype was isolated (i.e. host genus richness), the odds of

finding that subtype in domestic birds increased 70% (odds ratio

[95% CI] = 1.70[1.38, 2.10]). Effort was not significant with odds

ratio 1.00[0.99,1.01]. In other words, the more frequently a

subtype is found in different wild host genera the more likely it will

be found in domestic birds.

iii. Subtypes unique to continents and flyways. From

birds sampled since 1959, scientists have deposited 2,587 (94

subtypes) wild bird AIV sequences, with identified subtypes in the

Influenza Virus Database, from North American flyways, 565

from Europe (67 subtypes), 856 from Asia (61 subtypes), 61 from

Africa (16 subtypes), 68 from Australia and New Zealand (21

subtypes), and 26 from Latin America (14 subtypes). Twenty-two

subtypes were unique to North America, with nine found only in

Anseriformes and six found only in Charadriiformes (Figure 1c

and Supplementary Table S8). Six subtypes were unique to

Europe, all found only in Anseriformes. Asia had six unique

subtypes, five found only in Anseriformes and one found only in

Charadriiformes. Australia and New Zealand had four unique

subtypes, one each found in Anseriformes, Charadriiformes, and

Sampling and Biodiversity of AIV in Wild Birds
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Procellariiformes, and one found in all three orders. No subtypes

were unique to Latin America or Africa, and 74 were found on

multiple continents.

Within North America, 802 (61 subtypes) wild bird AIV

sequences were reported from the Pacific, 439 (52 subtypes) from

the Central, 660 (54 subtypes) from the Mississippi, and 686 (65

subtypes) from the Atlantic flyways. Specific subtypes unique to

each are shown in Figure 1d (see Supplementary Table S9 for

overview by bird order).

b. Measuring effort and estimating richness
i. Global richness during 1977-2012 in wild birds. We

incorporated 50 studies that totaled 268,700 wild birds sampled

around the world between 1977 and 2012 (Figure 2a). Our survey

identified 116 subtypes of which 102 were represented among the

wild bird sequences extracted from GenBank and 14 were not

(H1N7, H6N7, H8N1, H8N2, H8N6, H8N7, H9N8, H12N7,

H13N1, H13N4, H13N7, H14N7, H15N1, and H16N8). When

unique subtypes from the 50 studies were combined with the

Figure 1. GenBank data on subtypes displayed with host and geographic information. (a) Subtypes found in Anseriformes (green),
Charadriiformes (purple), Procellariiformes (blue), more than one order (gray), and occurrence in domestic birds (***); (b) richness of identifiable wild
bird genera (of 81 examined) associated with each subtype (+ indicates found in at least one family where genus was not determinable) and
occurrence in domestic birds (red); (c) distribution of subtypes unique to the continents of North America (blue), Europe (brown), Asia (tan),
Australasia (green with black X), and across multiple continents (gray); and (d) distribution of subtypes unique to the North American Pacific Flyway
(light green), Central Flyway (yellow), Mississippi Flyway (dark green), and Atlantic Flyway (red). Also indicated are subtypes unique to North America
but found in multiple flyways (blue), subtypes unique to other continents (brown), and subtypes found across multiple continents (gray).
doi:10.1371/journal.pone.0090826.g001
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GenBank submissions, the greatest subtype richness was in North

America (Atlantic Flyway), Europe, and Asia (Figure 2b).

ii. Large collections (.5000 birds) and sampling

targets. We identified seven distinct studies, all from the

Northern Hemisphere, which sampled at least 5,000 birds during

at least five sampling periods and indiscriminately tested for all

AIV subtypes. A brief description of these studies that predom-

inately sampled Anatidae, is provided (Table1). Egypt had the

lowest richness of AIV subtypes at 17, followed by Portugal at 20.

Sweden had the highest detected richness for one location (n = 74)

[14].

The nonparametric estimates of 95% confidence intervals for

total predicted AIV subtype richness were not overlapping for

many sites (Figure 3a). Predicted subtype richness, based on

rarefaction alone, was significantly different for some paired

comparisons among Egypt, Portugal, Canada, Taiwan, and

Sweden. The non-parametric mean Chao2 richness estimator

[95% CI] of AIV subtypes was 112[104, 135] based on occurrence

of GenBank sequences by year.

The sufficient sampling analysis showed that in five out of the

seven studies sampling targets set to acquire 75% of total AIV

subtype richness (75% target) were below 20,000 birds (Figure 3b).

Taiwan (n = 38,008) and the European Union (n = 57,480)

required the highest numbers of birds to reach the 75% target

whereas Egypt required the fewest birds (n = 7,464). Under their

respective sampling methodologies, among the seven studies the

Figure 2. Maps of global sampling effort and observed richness for nine regions. (a) Global sampling effort (total number of birds tested)
by region reported in 50 studies that non-discriminately tested for AIV subtype. If we did not identify studies that met the inclusion criteria for a
country, state (USA only), or province (Canada only) we report it as not observed. (b) Total richness (number of AIV subtypes detected) by region
based on GenBank records and 50 studies. A country, state (USA only), or province (Canada only) is not observed if we did not identify studies that
met the inclusion criteria and if no subtypes were reported in GenBank.
doi:10.1371/journal.pone.0090826.g002
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75% target was only achieved for the studies in Sweden and

Taiwan. The relationship between the 75% target sample size and

total predicted richness showed that some studies and locations

were more efficient at detecting richness (Supplemental Figure S2).

iii. Examination of effort and other drivers associated

with richness. Increasing the number of birds sampled,

duration of study (years), and prevalence of AIV were associated

with increased AIV richness (Supplementary Table S3). Percent-

ages of Anseriformes and Charadriiformes sampled did not

improve the model fit. ANOVA analysis suggests that 28% of

richness variance can be explained by geographic region (North

America, Latin America, Europe, Asia, Australia, and Africa). Best

model fit was achieved with a three-way interaction term for

number of birds sampled, duration of study, and AIV prevalence.

Increasing each interaction term was associated with greater AIV

richness.

Discussion

a. GenBank database
i. Observations and findings. GenBank is an important

data source with characteristics and biases that reflect human

health concerns and funding streams. Up until 1995, there was a

steady low level of AIV sequences from wild bird hosts being

deposited into GenBank. Then the number of deposits substan-

tially increased with domestic bird sequences and specifically

H5N1 subtype sequences predominating. After 2007, the number

of both wild and domestic submissions declined [21].

The GenBank data demonstrate that the majority of wild bird

subtypes were not specific to an avian order or continent; 61%

(68/112) of wild bird subtypes were identified in .1 order and

66% (74/112) were identified on .1 continent. Globally, 79%

(89/112) of wild bird subtypes were found in Mallards. However,

our results show that increasing host genus range was significantly

associated with increases in the odds of finding a subtype in

domestic birds. Although this may reflect some unadjusted bias in

the database associated with the high propensity to sequence wild

bird subtypes that have been associated with severe disease in

poultry (H5 and H7 subtypes) and enter them into the database, it

also implies that subtypes seen in multiple genera are more likely

to infect and persist in poultry.

We found that some subtypes appear to be limited to certain

bird orders or flyways, which suggest the presence of a limited

degree of subtype specificity to host or geographic region, but may

also reflect sampling biases within GenBank. Fifty-six percent (5/9)

of H9 subtypes were only found in Charadriiformes, of which four,

H9N4, H9N5, H9N6, and H9N7, were only detected in Delaware

Bay shorebirds. Fifty percent (8/16) of N3 subtypes were only

found in Anseriformes. Australia alone had 75% (3/4) of known

H15 subtypes; the other H15 subtypes have not been observed to

date. We also identified H8, H13, and H15 subtypes where four or

more combinations with NA subtypes had not been observed.

Noticeably, N7 lacked eight combinations with HA subtypes.

Figure 3. Subtype richness and sampling effort varies among studies. (a) Predicted AIV subtype richness (diamonds) with 95% confidence
intervals based on the mean Chao2 richness estimator for seven distinct study locations for which the criteria of five sampling events and .5,000
birds tested non-discriminately for AIV subtypes were met (Tableô 1). Further, predicted AIV subtype Chao2 richness estimates are displayed from
GenBank. (b) The sample size at each study location (blue bar) and minimum sufficient sampling size necessary to capture 75% of total estimated AIV
richness (black dot). EGY = Egypt [50], PRT = Portugal [51], MNG = Mongolia (this study), EU = European Union (this study), CAN = Alberta, Canada
[34], SWE = Sweden [14], TWN = Taiwan [37], and GB = sequences with subtypes deposited in GenBank (1959–2012).
doi:10.1371/journal.pone.0090826.g003
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ii. Deficiencies and strengths of the study. A drawback of

using data from GenBank for large-scale analyses is that much of

the data may be biased towards the detection of HPAI subtypes.

This is because of the international requirement to report all H5

and H7 viruses found in domestic and wild birds to the World

Organisation for Animal Health (OIE) and to determine their

pathogenicity, often by gene sequencing [22]. Thus, much AIV

surveillance has been targeted on H5 and H7 subtypes and the

genetic diversity uncovered was likely not characteristic of low

pathogenic avian influenza subtype diversity in the landscape [23–

25].

GenBank and the US National Center for Biotechnology

Information’s Influenza Virus Sequence Database represent a vast

resource for researchers interested in virus populations, evolution,

transmission, and movement [1,26–31]. Without such repositories

of AIV sequence data these types of genetic and risk analyses

would not be possible. However, because they are designed as

repositories of genetic information and not as repositories of

surveillance information, much of the demographic and geo-

graphic data, especially regarding the host genus, is not recorded

and thus is not available for analysis; nor are data about the

sampling effort that generated the isolate. The absence of these

data greatly diminishes the analytical, social, and economic value

of the sequence data placed in these databases. In more recent

years the Influenza Research Database (IRD) has rectified some of

these reporting issues across multiple institutions, by incorporating

standardized bird taxonomy, metadata standards, positive and

negative reports, and spatial coordinates of sampling [32].

Likewise, we recommend genetic databases to at least map host

species information to a standardized taxonomic database such as

those maintained by BirdLife International [33].

b. Estimating total richness for AIV subtypes
i. Observations and findings. The estimated subtype

richness and 75% target sample size of each study vary according

to factors such as location (e.g. breeding, wintering, pre-migratory

gathering, or stopover sites), sampling season, size and diversity of

host populations, sampling effort, sampling methodology, and

laboratory diagnostics. Although we focused on studies with the

largest sample sizes, differences in sampling approach or

laboratory diagnostic technique between independent studies

may bias comparisons of predicted subtype richness. In our

interpretation of the results below we discuss those biases in

specific and general terms.

Predicted subtype richness was highest in Sweden (Figure 3a).

However, this did not correlate with the largest sample size

required to identify 75% of the predicted virus subtypes in

circulation (Figure 3b). Notably, the Swedish study only sampled

Mallards, a species that the analysis of GenBank data suggests has

a particularly high subtype richness. Hence, the predicted subtype

richness is likely a reflection of sampling Mallards and is not

related to AIV subtype diversity that may have existed among

other sympatric bird species, which were present but not sampled.

Moreover, within the metapopulation of Mallards that share this

same flyway, AIV prevalence in Sweden was roughly 10% higher

throughout the year than it was in The Netherlands [18]. This

may explain why, in our study, predicted AIV subtype richness

was nearly twice as high in Sweden (where the AIV prevalence was

13%) as it was across Europe (prevalence 3%). Indeed higher

prevalence in a sampled population translates into more oppor-

tunities to detect subtype diversity.

Taiwan and Canada had similar predictions of subtype richness

(Figure 3a) but the sample size required to achieve the 75% target

for Taiwan was roughly twice that required for Canada (Figure

3b). This was likely due to the particularly low virus prevalence in

Taiwan (.1%), compared to Canada (24%), such that consider-

ably more Taiwanese birds required sampling in order to detect

75% of subtypes present. Since many different bird species/orders

were sampled in Taiwan, another explanation may be that

surveillance in Taiwan was not focused on the species with the

greatest subtype diversity.

Interestingly, the predicted AIV subtype richness in Sweden,

where the prevalence of AIV (all subtypes) was 13% in Mallards,

was nearly twice the predicted richness of Canada, even though

Canada had much higher AIV prevalence in ‘‘mainly Mallards’’

[34]. Possible explanations for the absence of a consistent, positive

covariance of prevalence with subtype richness include geographic

and seasonal differences, varying AIV metapopulation features

such as inter-flyway connectivity, and differing laboratory

methods.

We found that the sampling effort in the Northern Hemisphere

(n = 224,759) was five times greater than the sampling effort in the

Southern Hemisphere (n = 43,768). Despite higher sampling effort

in Africa and Australia than the North American Flyway regions

(Figure 2a), reported subtype richness in Africa and Australia was

almost 50% less (Figure 2b). This supports the concept that

Australia has its own AIV lineages [35]. Because of the large

differences in sampling effort, differences in targeted species, and

possible GenBank reporting bias, it should not be suggested that

sampling for global surveillance for circulating AIV subtypes

should be centered in the Northern Hemisphere. Certainly

neglecting the Southern Hemisphere in surveillance efforts would

lead to a failure to detect any subtypes specific to that region,

which may have its own unique AIV ecology.

For the Northern Hemisphere, our findings show that across

seven studies the estimated sample size required to detect the 75%

of subtypes in circulation ranged from 10,000 to 50,000 birds. If

we consider the target sample sizes for some of the different

locations represented in our data, one feasible surveillance

approach could involve selecting 3–5 study locations, replicating

the associated study methodology, and sampling 10,000–20,000

birds at each. Such a survey could be done over multiple years to

account for annual variability in circulating subtypes and to make

achieving the required sample size more manageable. Because of

the lower sample sizes needed in Canada and Sweden, where AIV

prevalence has been high in past surveys, these may be good

locations on which to focus a Northern Hemisphere surveillance

effort. In North America, others have suggested that the northern

prairie pothole region is an important staging and mixing area for

ducks, and thus for AIV surveillance [36]. Focused sampling to

obtain the bulk of subtypes should not overlook the importance of

exploratory studies to detect missing or rare subtypes in

understudied regions and species.

ii. Factors that affect the likelihood of hosts carrying

viruses or of virus detection. We recognize the need to be

cautious when comparing different studies with different method-

ologies and populations, and to be aware of how these factors are

influencing the system when we describe general patterns.

Comparable detections of AIV carriage will depend on our ability

to sample a representative part of the host populations, and

therefore of the virus population, at a given time.

The marked seasonal variations in AIV prevalence are

associated with stages in the bird host life cycle [37]. Transmission

to new hosts is facilitated by breeding and the incorporation of

immunologically naı̈ve individuals into the population. Levels of

population immunity will determine the seasonal AIV prevalence

and subtype dynamics [38]. In the Northern Hemisphere, more

virus has been detected from hatch year birds during their first
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southward fall migration than the spring northward migration.

Virus prevalence and detection is greater at higher latitudes and

decreases as the birds move into the wintering grounds [18,39–

41]. The congregation of birds during migration and at stopover

sites increases transmission and spread. Populations of some

species support sustained AIV circulation and have a major role as

reservoir hosts while other species may be spillover hosts.

Therefore, a study’s ability to detect subtypes will depend on

what host species are sampled and where and when they are

sampled within this annual cycle.

The duration and intensity of virus excretion by infected birds

may affect the detection of viruses. Typically, AIV infections are

acute, with relatively short excretion periods (from seven days up to

20 days in experimental infections of naı̈ve ducks [17,42,43].

Therefore time of sampling and type of sampling (capture method,

cloacal vs. respiratory, and individual vs. environmental) during the

course of infection in a single individual will affect the probability of

detecting virus [44]. The quality of the samples collected and the

type of sample analysis also affects virus detection and culture.

Factors that influence isolation success are the composition of

transport medium, sample storage temperature, and the number of

freeze and thaw cycles [16]. Virus diversity data are mostly based on

those isolated in embryonated chicken (Gallus gallus domesticus) eggs,

and some AIVs may grow poorly in these eggs – for instance gull

AIVs that seem to be host specific [45].

iii. Assumptions and opportunities. It is clear that it is not

currently feasible to obtain a perfectly representative sample of

host species and their AIV diversity. We set reasonable inclusion

criteria for the data sets used in this analysis, and thereafter

assumed that the seven case studies selected were sufficiently

representative of host and virus populations and sufficiently

comparable to warrant a descriptive assessment of likely drivers.

Notably, the Southern Hemisphere was not represented within

these seven studies.

Not surprisingly, our examination of factors that influence

richness demonstrated the importance of effort alongside prevalence

and study duration and interactions between the three. Unfortu-

nately data were too limited to enable a careful examination of

temporal and interactive drivers of richness (e.g. local species

composition, sampled population, location, seasonality, and prev-

alence within taxa) but it is an area of important research.

Conclusions and Recommendations

a. Future AIV surveillance and studies in wild birds
Based on current data availability, sample-based accumulation

curves provide an initial rationalization and optimal (cost-effective)

strategy for AIV surveillance, with the intention of identifying a

high proportion of the virus subtypes in circulation in a given time

interval. Presently, researchers can select species, locations, and

months that are going to maximize the diversity pool, but sample-

based accumulation curves will allow them to (1) estimate the size

of the virus subtype diversity pool once sampling is underway, and

(2) then optimize their sampling strategy to maximize subtype

detection while minimizing samples collected and tested.

Our GenBank results also provide perspective on geographic

and host species distributions of AIV relevant to global surveil-

lance. The global effort analysis we conducted identified significant

sampling bias between the hemispheres that may partially explain

the imbalance of subtypes only found in the south (n = 4) or north

(n = 34). Another explanation is offered by a recent ecological

niche model that showed the relative occurrence of AIV is much

higher in wild bird populations in northern regions [46]. The

imbalance may also be a function of host species distribution,

especially Anseriformes and Charadriiformes, environmental and

landscape factors, or a combination of both.

Broadly our GenBank data analysis suggests that AIV surveil-

lance to detect the widest possible range of virus subtypes should

target the orders Anseriformes and Charadriiformes, which appear

to support the greatest subtype diversity. Further studies are

required to determine if and how subtype diversity varies at

different times of year. Our sample size estimates to detect 75% of

virus subtypes in circulation are based on surveillance periods with

at least five sampling periods. For some well-studied locations, with

prior knowledge of spatial and temporal patterns, AIV prevalence

can be used to determine sample size more precisely [7].

A more detailed and comprehensive global understanding of

AIV richness drivers beyond the obvious factors of effort, AIV

prevalence, and surveillance duration and location, will require

researchers to provide and compile individual bird-level data [32].

Important demographic information required for meaningful eco-

epidemiological analysis, such as host species, sampled location,

date of sampling, age, and sex, cannot be easily obtained from

published research. A specific database should be compiled to

capture such detailed information and to insure comparability

across studies. At a more localized scale, further data from

sampling individual birds, including antibodies to AIV, and

information on movement both prior to capture (e.g. through use

of stable isotopes to map natal origin of bird populations [15]), and

following release (e.g. through banding, color marking, or various

forms of telemetry) will also be highly valuable for future modeling.

Ultimately, the selection of approaches to surveillance will depend

on the objectives of the individual programs, and a combination of

strategies would be required to address additional research questions.

A coordinated strategy of wild bird surveillance could be employed to

describe a desired proportion of AIV subtype richness in a cost

effective manner. This surveillance would not detract from the

importance of exploratory studies (e.g. using serology [47]), which

seek to identify new pools of virus diversity that may support unique

subtypes (such as the recent isolation of H14 viruses from sea-ducks in

Wisconsin [48] or H15N4 in western Siberia [49]).

b. Subtype diversity: high throughput sequencing and
analysis

In the future, sample-based accumulation curves could be used

to assess what areas and species to focus on (e.g. a judicious mix of

Mallards and exploratory studies) in order to detect the widest

diversity of AIV subtypes as possible for sequencing. Although the

number of available complete AIV genome sequences is still

relatively small compared to those of HA and NA subtype gene

segment data, the increasing capability and capacity of high-

throughput genome sequencing tools now makes possible full-

genome sequencing at unprecedented speed and ever lower cost.

Thus, it is now possible to focus AIV surveillance on the whole

spectrum of genetic diversity rather than on HA and NA subtypes

alone. Such full genome data will advance our understanding of

the molecular evolution, epidemiology, pathogenicity, transmis-

sion, and antiviral resistance among AIV. Once high throughput

facilities have led to a better understanding of diversity within the

genome constellation, we can again use sample-based accumula-

tion curves to iteratively improve predictions of transient AIV

subtype diversity and estimate host sampling targets.

c. Broader perspective: recommendations for general
pathogens

This analysis has pioneered the application of species accumu-

lation curves to estimating the surveillance effort required to
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monitor the subtype diversity and richness of AIV. A collaborative

international surveillance program based on this analysis would help

meet most of the animal and human health objectives of AIV

surveillance world-wide and contribute to vigilance and prepared-

ness for potential influenza A pandemics as urged by Morse et al. [4].

More broadly, while we have focused on analyzing subtype

richness within a single virus group (avian influenza A viruses), the

approach is applicable to analysis of higher-level virus taxa (e.g.

species, genus, family, or order) as well as to other pathogens such

as other viruses (e.g. West Nile), bacteria, or helminths. Examining

sampling effort in relation to novel pathogen identification can

provide estimates of necessary sample sizes to detect a target

number of pathogen types. Requiring relatively minimal data,

species accumulation curves can be applied to expand our

knowledge of pathogen diversity.
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