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Abstract 

The endangered population of Amur tigers (Panthera tigris altaica) in the Russian Far East 

(RFE) faces an increasing risk of extinction due to infection with canine distemper virus 

(CDV). Short-lasting CDV infections are unlikely to be maintained in small populations of 

species with limited connectivity like tigers, where viruses fade out as susceptible hosts are 

depleted. Multi-host pathogens can persist in more abundant host species that can act as 

reservoirs of infection for threatened populations. This study combines assessments of host 

demography, serology and viral phylogeny to establish the relative contribution of 

domestic dogs and small bodied wild mesocarnivores to the maintenance of CDV, and as 

sources of infection for tigers. No antibodies were detected among tigers sampled prior to 

2000 (n=19), but were measured in 35.7% of tigers in subsequent years (n=56), with at 

least five discrete transmission events occurring in one well-monitored population. Viral 

sequences from three tigers and one Far Eastern leopard (P. pardus orientalis) aligned 

within the Arctic-like clade of CDV, and shared recent common ancestry with viruses from 

22 other wild carnivores from the region. Extensive spatial mixing of wild carnivore 

lineages suggested long chains of transmission consistent with a maintenance population. 

The exposure of tigers following 2000 coincides with increases in sable (Martes zibellina) 

numbers and hunting pressure, which could lead to greater pathogen prevalence and 

potential for spill over from a wild reservoir. The ratio of humans to dogs in rural areas in 

the RFE are among the lowest in the world (1.73), but the overall number of dogs has been 

stable during the period of increased CDV exposure in tigers. The only CDV sequence 

obtained from dogs shared high identity with Asia-4 clade viruses from dogs in Thailand, 

and was distantly related to wildlife sequences from the RFE. Serum antibodies were 

detected in dogs in all 26 communities where households were surveyed, but 

seroprevalence was higher in remote, less densely populated areas, suggesting possible 

transmission from wildlife. Although the maintenance of CDV in Russian dogs remains 

unconfirmed, the strong support for a wildlife reservoir limits options for managing the 

impact of CDV on tiger populations. The high turnover of large and often inaccessible 

populations of mesocarnivores combines with limitations in vaccine safety, efficacy and 

delivery, to render the control of CDV in a wildlife reservoir untenable.  Managing the 

impact of CDV on Amur tigers must therefore focus on restoring the size and integrity of 

remaining tiger populations to withstand future outbreaks. The safety and efficacy of 

vaccine products for tigers should also be investigated, for use in low coverage vaccination 

strategies that could enhance the long-term persistence of tiger populations.  
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Chapter 1 Introduction 

 

Abstract 

Infectious disease is capable of inducing declines in wildlife populations, and occasionally 

results in their extinction. Threatened populations are at greater risk from pathogens that 

are transmitted through density independent processes, including those contracted during 

social interaction (frequency dependent transmission), vector-borne diseases, or those that 

spillover from reservoirs of infection. With small, often fragmented populations, large 

carnivores are particularly vulnerable to the effects of infectious disease, especially multi-

host pathogens like rabies and canine distemper virus (CDV). Recently CDV has been 

diagnosed in Amur tigers (Panthera tigris altaica) in the Russian Far East, threatening 

population viability, and indicating a need to consider management options. Available 

strategies include measures to 1) reduce disease incidence in the reservoir, 2) reduce 

spillover from the reservoir to the threatened host, or 3) reduce transmission within the 

threatened host itself. The use of vaccines to reduce transmission is more challenging in 

wild than in domestic host populations, and must address issues of vaccine safety, efficacy 

and delivery. Selection of control strategies should be based on epidemiological 

understanding of the disease system concerned, particularly the identity of host populations 

that contribute to the maintenance of the pathogen. This thesis assesses the relative 

contribution of domestic and wild carnivores to the maintenance of CDV in the Russian 

Far East, and their likely roles as sources of infection for Amur tigers. These findings will 

be interpreted in the context of potential control measures, to inform management 

recommendations aimed at minimizing the threat to remaining populations of Amur tigers. 

 

Infectious disease and extinction 

We are living through an age where species extinction is estimated at 100-1,000 times that 

of pre-Anthropocene levels (Pimm et al. 1995). Measured against human-mediated drivers 

such as habitat modification, over-exploitation, invasive species and climate change, 

infectious disease has been considered to be a relatively minor contributor to population 

decline and extinction (De Castro and Bolker 2005, Mace et al. 2008). While the 

importance of these anthropogenic drivers is not in question, infectious disease has been 

implicated in a growing list of species declines (Skerratt et al. 2007, McCallum et al. 2009, 
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Lorch et al. 2011). In many cases pathogens have had a profound effect on population size, 

but there are few examples where they have resulted in extinction (Thorne and Williams 

1988, Carlton et al. 1991, Pounds et al. 1997, Schloegel et al. 2006). This chapter will 

examine the circumstances where infectious disease can increase the extinction potential of 

a population, and apply these observations to the case of canine distemper virus (CDV) and 

Amur tigers (Panthera tigris altaica) in the Russian Far East. With reference to potential 

management strategies to reduce the impact of CDV, the chapter will outline the key 

information gaps, which will be addressed as the main objectives of this thesis.  

 

In many simple host-parasite systems, transmission follows a density dependent process 

where the parasite is unable to reduce host numbers to zero. Declines in host population 

through reduced survival or fecundity lead to a decrease in host density, which slows rates 

of transmission and enables host numbers to recover. However, under certain 

circumstances pathogens are able to threaten population survival, even where subject to 

density dependence, or where transmission occurs in a density independent manner 

(summarized in Table 1.1). Even in density dependent situations, a pathogen can threaten 

the survival of a host population, by reducing it to a size where extinction may occur due to 

stochastic processes. Without intervention, it is likely that outbreaks of CDV would have 

led to the extinction of the black-footed ferret (Mustela nigripes), whose populations had 

previous been reduced through habitat fragmentation and declining prey resources 

(Williams et al. 1988, Thorne and Williams 1988).  

 

Populations can also be threatened indirectly, when pathogens reduce the availability of a 

critical resource such as food. The loss of eelgrass (Zostera marina) from the Atlantic 

seaboard of North America due to infection with the Labyrinthula slime mould, deprived 

the eelgrass limpet (Lottia alveus) of food and habitat, resulting in its extinction (Carlton et 

al. 1991). Other examples include the impact of Lagomorph infections on prey availability 

for Iberian lynx (Lynx pardinus, Castro and Palma 1996, Ferrer and Negro 2004), the role 

of Yersinia in the collapse of prairie dog colonies, which support black-footed ferrets 

(Thorne and Williams 1988), and the recovery of East African lions (P. leo) following the 

control of rinderpest virus (Packer et al. 2005). These examples demonstrate an ‘ecological 

cascade’, illustrating the profound effects that could occur wherever disease affects the 

structure of an ecosystem.  
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Table 1.1. Mechanisms and examples of risk factors that can precipitate the decline or 
extinction of threatened species due to infectious disease. 

Host Pathogen
Black-footed 
ferret

Canine distemper 
virus

Extinction 
likely

Thorne and 
Williams 1988

Ethiopian wolf Rabies Decline Laurenson et al. 
1998

Koala Chlamydia 
pecorum / C. 
pneumoniae

Decline McCallum 2012

Tasmanian 
devil

Tasmanian devil 
facial tumour

Decline McCallum et al. 
2009

Hawaiian 
honeycreepers

Avian malaria 
/Avian poxvirus

Decline & 
extinction

van Riper et al. 
1986

Yellow-billed 
magpie

West Nile virus Decline Crosbie et al. 
2008

Christmas 
Island rodents

Trypanosoma 
spp.

Extinction Wyatt et al. 
2008

Great apes Ebola virus Decline? Leroy et al. 
2004

Arctic fox Otodectes cynotis Decline Goltsman et al. 
1996

North 
American bats

Pseudogymnoa-
scus destructans 

Decline Lorch et al. 
2011

Amphibians Batrachochytrium 
dendrobatidis

Decline & 
extinction

Skerratt et al. 
2007

Eel grass 
limpet

Labyrinthula spp. Extinction Carlton et al. 
1991

Iberian lynx Rabbit 
haemorhhagic 
disease virus 
/myxoma virus

Decline Castro and 
Palma 1996

SourceExtinction 
mechanism

Abiotic reservoir - 
Environmental stability 
of the pathogen

Indirect -        
Pathogen depletion of 
resource on which host 
depends 

Examples Effects

Small host  
population -  
Stochastic effects (e.g. 
genetic bottlenecks, 
reduced immunity, sex 
imbalance), or Allee 
effects
Frequency   
dependent infection - 
Transmission 
independent of host 
density (e.g. through 
sexual contact, or 
social structure)

Biotic reservoirs - 
Sympatry with more 
abundant maintenance 
host species

Vector-borne    
disease -             
Where survival of the 
vector is independent 
of declining host 
species

 
(van Riper et al. 1986, Laurenson et al. 1998, Leroy et al. 2004, Wyatt et al. 2008, Crosbie et al. 2008) 
 

The potential for pathogens to threaten host populations increases in situations where 

transmission continues despite a decline in host density. The frequency of certain 

behaviours such as sexual or territorial interactions, are not always mediated by the density 

of hosts, leading to opportunities for frequency dependent transmission (Begon et al. 2002, 
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Swinton et al. 2002). Aggressive encounters between Tasmanian devils (Sarcophilus 

harrisii) during reproduction and when feeding are unaffected by density, and facilitate the 

transmission of Tasmanian devil facial tumour disease (TDFTD), even in the face of 

widespread declines (McCallum et al. 2009). Modelling of sarcoptic mange transmission in 

British foxes (Vulpes vulpes) also suggests a frequency dependent process (Devenish-

Nelson et al. 2014), which if applicable to Otodectic mange, could explain the near 

extinction of Arctic foxes (V. lagopus) on Mednyi Island (Goltsman et al. 1996).  Despite 

the compelling theoretical linkage between frequency dependent transmission and host 

extinction, there are few examples of this occurring in the real world (De Castro and 

Bolker 2005). This may be due to a switch from frequency dependence to density 

dependence when populations reach very low levels (Ryder et al. 2007), or intermediate 

modes of transmission that operate in different temporal or ecological contexts (Smith et 

al. 2009, Morters et al. 2012).  

 

The presence of biotic or abiotic reservoirs represents another mechanism that allows 

pathogens to avoid density dependent effects on a threatened host population (Begon and 

Bowers 1995, Woodroffe 1999, Haydon et al. 2002, Viana et al. 2014). The fungal 

pathogens Pseudogymnoascus destructans (responsible for white-nose syndrome in North 

American bats), and the chytrid fungus Batrachochytrium dendrobatidis (implicated in the 

decline and extinction of over 200 species of amphibians, Skerratt et al. 2007), both utilize 

environmental reservoirs and alternate hosts as sources of infection for dwindling 

populations (Murray et al. 2009, Lorch et al. 2011, 2013). A key element in reservoir-

based systems is the capacity of the pathogen to infect multiple host species, thus 

expanding the pool of susceptible individuals, ensuring maintenance of infection and a 

continual source of ‘spillover’ for the declining population (Woodroffe 1999, Haydon et al. 

2002).  

 

Population declines and extinctions are most likely where several factors converge to 

create a ‘perfect storm’ of circumstances. Table 1.2 summarizes a series of cases, where 

infectious disease has driven declines, or extinction of wild populations. From this it is 

evident that small populations are particularly at risk to the effects of infectious disease, 

both through their inherent vulnerability to stochastic events, but also where genetic 

bottlenecks have increased their susceptibility to infection. It is this genetic similarity that 



Chapter 1. Introduction  19 

Table 1.2. Illustrates the multifactorial contributors that can lead to population decline and 
extinction from infectious disease 

Example Pathogen S
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Source
Black-footed 
ferret

Canine distemper 
virus

✓ ✓ Thorne and 
Williams 1988

Ethiopian wolf Rabies virus ✓ ✓ Laurenson et al. 
1998

Ethiopian wolf Canine distemper 
virus

✓ ✓ Gordon et al. 
2015

Koala Chlamydia pecorum 
/ C. pneumoniae

✓ ✓ McCallum 2012

Tasmanian 
devil

Tasmanian devil 
facial tumour

✓ ✓ McCallum et al. 
2009

Amphibians Batrachochytrium 
dendrobatidis

✓ ✓ Skerratt et al. 
2007

Hawaiian 
honeycreepers

Avian malaria 
/Avian poxvirus

✓ ✓ van Riper et al. 
1986

Christmas 
Island rats Trypanosomes ✓ ✓ Wyatt et al. 

2008
Great apes Ebolavirus ✓ Leroy et al. 

2004
Arctic fox Otodectes cynotis ✓ ✓ Goltsman et al. 

1996
North 
American bats

Pseudogymnoascus 
destructans

✓ Lorch et al. 
2011

Eel grass 
limpet Labyrinthula spp. ? ✓ Carlton et al. 

1991
Iberian lynx Rabbit 

haemorhhagic 
✓ ✓ Castro and 

Palma 1996
Iberian lynx Feline leukaemia 

virus
✓ ? ✓ López et al. 

2009
(López et al. 2009, Gordon et al. 2015) 

allowed TDFT to proliferate within a population of devils so similar, that they have no 

immunological capability to recognize the transmissible tumour as foreign (McCallum 

2008). Another feature of these case studies is the prominence of exotic infections, for 

which threatened hosts have yet to evolve defenses. In most cases these introductions 

follow the movement of pathogens along human transport networks, or introduction from 

domestic or pest species (Daszak et al. 2000, Cunningham et al. 2003).  As human 

populations continue to rise, and gain in mobility, such ‘pathogen pollution’ events are 

likely to continue, and infectious disease may become a more prominent feature of species 

decline and extinction.  
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Infectious disease threats to wild carnivores 

Several aspects of wild carnivore ecology and life history make their populations 

particularly sensitive to the effects of infectious disease (Murray et al. 1999, Purvis et al. 

2000, Cardillo et al. 2014). Carnivores require larger areas, and generally occur at lower 

densities than species that meet their nutritional needs at lower trophic levels (Lindstedt et 

al. 1986). Habitat fragmentation limits the areas available for carnivores, leading to small 

and isolated populations that are susceptible to stochastic extinction (Crooks 2002), an 

effect that disproportionally affects predators of large body size (Crooks 2002, Cardillo et 

al. 2014). Predatory behaviour also brings carnivores into conflict with humans, which 

increases mortality along the edges of populations that extend beyond the boundaries of 

protected areas (Woodroffe and Ginsberg 1998). The combined effects of small population 

sizes, and barriers to dispersal in multi-use landscapes also lead to genetic homogenization, 

with deleterious effects on immunity (O’Brien et al. 1985, Roelke et al. 1993, Pokorny et 

al. 2010).  

 

Pathogens affecting threatened carnivores tend to have a wide host range, ensuring a 

continued source of infection, in areas of sympatry with abundant susceptible hosts (Table 

1.3, Murray et al. 1999; Woodroffe 1999). Domestic dogs are often considered to be the 

most likely sources of infection for threatened populations (Gascoyne et al. 1993, Kat et al. 

1995, Roelke-Parker et al. 1996, Randall et al. 2004), but an abundance of susceptible 

wildlife could be equally important in some areas (Weiler et al. 1995, Craft et al. 2009, 

Viana et al. 2015). With high rates of mortality, rabies virus has been particularly 

prominent in the decline and extinction of wild carnivore populations (Gascoyne et al. 

1993, Kat et al. 1995, Hofmeyr et al. 2000, Randall et al. 2004). Outbreaks of CDV are 

also commonly reported in wild carnivores (Table 1.3), but only in the case of the black-

footed ferret was extinction considered a likely sequel (Thorne and Williams 1988). With 

pathogens like CDV, which invoke a strong protective immunity in a cohort of recovered 

animals (Greene and Appel 2006), survivors may be sufficient to repopulate an area once 

an outbreak has abated (Prager et al. 2012).  
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Table 1.3. Pathogens associated with the decline of endangered wild carnivores. 

Species Pathogen
Multi-host 
pathogen? Source

African wild dog Rabies Yes Cleaveland and Dye 1995
African wild dog Rabies Yes Kat et al. 1995
African wild dog Rabies Yes Scheepers and Venke 1995
African wild dog Rabies Yes Hofmeyer 2000
Ethiopian wolf Rabies Yes Laurenson 1998
Bat-eared fox Rabies Yes Maas 1993
Blanford's fox Rabies Yes McDonald 1993
Black-footed ferret Canine distemper virus Yes Thorne and Williams 1988
Lion Canine distemper virus Yes Roelke-Parker et al. 1996
Ethiopian wolf Canine distemper virus Yes Gordon et al. 2015
Santa Catalina Island fox Canine distemper virus Yes Timm et al. 2009
Baikal seal Canine distemper virus Yes Grachev et al. 1989
Harbour seal Phocine distemper virus Yes Dietz et al. 1989
Iberian lynx Feline leukaemia virus Yes López et al. 2009
Grey wolf Parvovirus (suspected) Yes Peterson et al. 1998
Mednyi Arctic fox Otodectes cynotis Yes Goltsman et al. 1996
Sea otter Toxoplasma gondii Yes Conrad et al. 2005
African wild dog Anthrax Yes Creel 1995

(Dietz et al. 1989, Grachev et al. 1989, Maas 1993, MacDonald 1993, Cleaveland and Dye 1995, Creel et al. 1995, Scheepers and Venzke 1995, Peterson et al. 1998, Conrad et al. 200 

Conservation status of tigers 

Global populations of tigers are at an all time low, with numbers of reproductive females in 

the wild now fewer than 1,000 individuals (Walston et al. 2010). Pressure from agriculture, 

industry and urbanization has fragmented tiger habitat, such that remaining populations 

occupy less than 7% of their former range and more than half of the world’s tigers are 

confined to habitat islands containing 25 or fewer animals (Sanderson et al. 2006, Walston 

et al. 2010). Despite their high profile, tiger declines are continuing, with the number of 

countries that support breeding populations falling from thirteen in 2006, to eight by 2015 

(Goodrich et al. 2015). Only 21% of current tiger range is under some form of protection, 

although many of these reserves are severely constrained by shortages in budget, 

management, and enforcement (Forrest et al. 2011). Even in suitable habitat, tigers face a 

variety of threats, including competition with humans for prey resources, direct poaching 

to meet the demand for their body parts and retaliation due to conflicts with humans 

(Walston et al. 2010, Goodrich et al. 2015).  

 

The Amur tiger subspecies once occupied vast areas of temperate forest in northeast Asia, 

extending from the Far East of Russia south through the Korean Peninsula, and west across 

Manchuria. In the early Twentieth Century carnivore control measures and a trade fueled 

by the demand from zoological collections drove Amur tiger numbers to as few as 20-30 

individuals by the 1940s (Kaplanov 1948). Hunting of tigers was outlawed in 1947, and 
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collection for captivity was banned in 1956 (Smirnov and Miquelle 1999). Aided by the 

establishment of strictly-protected areas (‘zapovedniks’), tiger numbers began to climb and 

by 2005 there were estimated to be between 331 and 393 adult and subadult Amur tigers, 

although the population may now have plateaued, or possibly slipped into decline 

(Miquelle et al. 2007, 2011).  

 

In 2003, CDV was diagnosed in a tigress from the Russian territory of Khabarovskii Krai 

(province); the first time the disease had been detected in a wild tiger (Quigley et al. 2010). 

A further two cases were confirmed in 2010, with others suspected, leading to concerns 

that disease may represent a new threat to the population (Seimon et al. 2013, Gilbert et al. 

2015). All three of these tigers were severely debilitated, with two dying spontaneously 

while in care, and one being euthanized (Gilbert et al. 2015). Analysis of 40 serum samples 

collected from tigers between 1992 and 2004 found antibodies to CDV in a further five 

tigers, all sampled from 2000 onward, and it was proposed that the virus may be newly 

emerging in the population (Goodrich et al. 2012, Seimon et al. 2013). Further details 

describing the initial detection of CDV in tigers in Primorskii are provided in Appendices I 

and II. A population viability analysis, incorporating an epidemiological SIR-D 

(susceptible, infected, recovered/dead) compartmentalized model predicted that CDV 

could increase the extinction potential of Amur tigers (Gilbert et al. 2014). The model 

exposed tigers to CDV through predation from a reservoir consisting of domestic dogs 

and/or wild carnivores, as well as during regular, but infrequent contact with other tigers. 

The model outcome was sensitive to increases in CDV prevalence (from 0.6% – 6.2%), 

and contact with the reservoir (1.65 – 3.87 contacts/tiger/year) with 50-year extinction risk 

probability increasing from 6.3% to 55.8% for a starting population of 18 tigers, compared 

to a control population without CDV (Gilbert et al. 2014). The model also indicated a 

disproportional outcome for small populations with a fifty-year extinction probability for a 

population of 25 tigers that was 1.65 times greater in the presence of CDV than control 

populations (Gilbert et al. 2014).  

 

Several features of tiger ecology increases the risk represented by infectious disease. The 

Amur tiger population is small, and thinly dispersed with breeders maintaining large 

territories that mostly exclude tigers of the same sex (390 ±136 km2 for females, and 1,385 

±539 km2 for males, Goodrich et al. 2010). Thus, most tigers range beyond the boundaries 

of protected areas where they are at an increased risk from encounters with humans 
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(Woodroffe and Ginsberg 1998), with anthropogenic factors implicated in at least 80% of 

Amur tiger deaths (Miquelle et al. 2005, Goodrich et al. 2008). Deaths from CDV are 

thought to represent an additive cause of mortality (Robinson et al. 2015), placing a further 

burden on an already stressed population. In comparison to other solitary felids, tigers 

breed later in life and have a longer birth interval, which reduces their resilience to modest 

increases in mortality, such that populations take longer to recover after declines (Chapron 

et al. 2008).  

 

Introduction to Morbilliviruses and canine distemper 
virus 

Canine distemper virus (CDV) is a member of the family Paramyxoviridae, and the genus 

Morbillivirus, which includes some of the most important pathogens in human history. 

Morbilliviruses are single stranded, non-segmented, negative sense, RNA viruses encoded 

by genomes of between 15,690 to 16,050 nucleotides in length (Greene and Appel 2006, 

Nambulli et al. 2016). In addition to CDV, there are currently five species recognized 

within the genus: measles virus, rinderpest virus, peste des petits ruminants virus (PPRV), 

phocine distemper virus (PDV) and cetacean morbillivirus (CeMV). Also, a novel feline 

Morbillivirus (FeMV) has recently been described in domestic cats in Hong Kong, 

mainland China, Japan and the United States (Woo et al. 2012, Furuya et al. 2014, Sharp et 

al. 2016). However, the clinical presentation and genetic structure of FeMV differs from 

other Morbilliviruses, and its true relationship has yet to be resolved (Nambulli et al. 2016, 

Sharp et al. 2016).  

 

Morbilliviruses are highly infectious, and share a similar pathogenesis. Due to their relative 

fragility, Morbilliviruses are generally transmitted horizontally through direct contact via 

infected aerosols, urine or faeces, although vertical transmission has been documented in 

humans, dogs and cetaceans (Krakowka et al. 1977, Fernández et al. 2008, Giusti et al. 

2013). All Morbilliviruses are lymphotropic, and alveolar macrophages and dendritic cells 

in the lung serve as the most likely route of entry into the host (Lemon et al. 2011). The 

viral haemagglutinin (HA) glycoprotein binds to host cell receptors, and together with the 

fusion (F) glycoprotein mediates fusion and cell entry. The main host receptor utilized 

during early infection is the CD150, or signaling lymphocyte activation molecule/F1 

(SLAM), present on B and T-lymphocytes and dendritic cells (Tatsuo et al. 2000, 2001, 
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von Messling et al. 2006, Melia et al. 2014). The virus then spreads systemically, via the 

lymphatic and blood system (Ludlow et al. 2014). Death of lymphocytes at this stage can 

result in profound leucopoenia and immunosuppression, the extent of which strongly 

influences the outcome of infection (Greene and Appel 2006). Once established, 

Morbilliviruses progressively make use of the nectin-4 receptor (also known as poliovirus 

receptor-like 4) to gain entry into epithelial cells (Muhlebach et al. 2011, Noyce et al. 

2012, Birch et al. 2013, Melia et al. 2014). Infection of epithelial cells is associated with 

clinical disease including respiratory signs, erythema and fever, as well as transmission to 

other susceptible hosts (Sawatsky et al. 2012). During later stages of infection, viruses can 

invade the central nervous system, causing a demyelinating leukoencephalomyelitis, 

leading to progressive neurological signs including myoclonus, ataxia, plegia and seizures 

(Beineke et al. 2009, Ludlow et al. 2012, Duignan et al. 2014). In dogs infected with CDV, 

mortality rate varies with viral strain, with in excess of 25 to 75% of infections being 

subclinical, and mortality of up to 50% of dogs that develop disease (Appel  1987, Greene 

and Appel 2006). Dogs that survive infection develop a long lasting immunity that can 

remain protective for the remainder of their lives (Greene and Appel 2006).  

 

Morbilliviruses show a propensity for infecting multiple host species (Table 1.4). The host 

range of CDV is the widest of all Morbilliviruses, and is the only member of the genus 

where natural infections of both terrestrial and marine species have been recorded (Table 

1.4). Susceptibility to CDV is not confined to carnivores, with mortality reported in 

peccaries (Tayassu tajacu, Appel et al.1991), rodents (Origgi et al. 2013), and primates 

(Yoshikawa et al. 1989, Sun et al. 2010, Sakai et al. 2013). Species susceptibility to 

infection is mainly mediated through the conformation of the SLAM receptor, the structure 

of which appears to have coevolved with that of the Morbillivirus HA-genes (Ohishi et al. 

2010).  

 

Several features of Morbillivirus biology have important implications for disease control. 

All Morbilliviruses exist as a single serotype, and vaccines are capable of stimulating 

strong, and long-lasting immunity in susceptible hosts (Greene and Appel 2006). The 

devastating impact of rinderpest virus on agro-economies and food security motivated a 

global vaccine-based control programme, which was successful in eradicating the virus by 

2011 (Food and Agriculture Organisation of the United Nation and World Organisation for 

Animal Health 2011, Morens et al. 2011, Roeder 2011). Plans are now underway for a 
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similar eradication effort focused on PPRV (Anderson et al. 2011, Baron et al. 2011). 

However, unlike rinderpest (which was maintained in cattle), the wider host range of 

PPRV may present a challenge to control efforts, as the virus may be maintained in a 

number of host species. Similar issues apply to CDV, and even local elimination projects 

must address the potential of viral maintenance in both domestic and wild species. For a 

pathogen of limited zoonotic or economic importance, the prospects for widespread CDV 

control are remote due to limited financial incentives.  

 

Canine distemper virus in Felids 

The first case of CDV in a tiger was diagnosed in a captive Bengal tiger in the United 

States in 1979 (Blythe et al. 1983). Subsequently a number of other reports describing 

sickness and mortality in captive tigers have been published (Appel et al. 1994, Gould and 

Fenner 1983, Konjević et al. 2011, Nagao et al. 2012, Zenker et al. 2001), and further cases 

were identified in a retrospective review of archived specimens (Myers et al. 1997). Cases 

have typically presented with neurological signs (seizures, ataxia, paresis), anorexia, 

gastrointestinal signs (vomiting and diarrhea), and less frequently respiratory disease. To 

date, the only reports of CDV in wild tigers have involved those in Russia (Quigley et al. 

2010, Seimon et al. 2013), although an anecdotal report from India may also have included 

wild tigers (ProMED, 2014). 

 

Rates of morbidity and mortality are difficult to infer from many published accounts of 

CDV outbreaks in captive tigers and other large felids but approximately 50% of clinically 

affected tigers have died (Table 1.5). In many cases the number of tigers (or other large 

felids) present within the collection are not stated, and/or serological data were not 

collected to assess exposure of contact animals. Death can occur during early stages of 

infection, which are characterized by anorexia, diarrhea, vomiting and respiratory signs. 

Survivors can go on to develop neurologic signs, or these can develop spontaneously 

without evidence of prior disease (Appel et al. 1994). In most cases initial signs of enteric 

and respiratory disease last from a few days to approximately two weeks, with neurologic 

signs evident from two to five months later (Blythe et al. 1983, Nagao et al. 2012). Most 

tigers that develop neurologic signs are either die or are euthanized (Table 1.5). However, 

one case exhibited progressive neurologic signs for a period of 16 months before being 

euthanized (Blythe et al. 1983), although the severe clinical signs would have prevented 



 

Table 1.4. Summary of the host range of Morbillivirus species currently recognised by the International Committee on Taxonomy of Viruses, and the 
pathology and immunological responses they elicit. 

Morbillivirus Order Family No. of 
species 

Clinical 
disease/ 
pathology 

Antibodies Source 

Canine 
distemper 
virus 

PROBOSCIDEA Elephantidae 1 No Yes (Oni et al., 2006) 
PRIMATES Cercopithecidae 3 Yes Yes (Qiu et al., 2011; Sun et al., 2010) 
RODENTIA Sciuridae 1 No Yes (Origgi et al., 2013) 

CARNIVORA 

Felidae 16 Yes Yes (Appel et al., 1994; Munson et al., 1997) 
Viverridae 5 Yes No (Chandra et al., 2000; Machida et al., 1992) 
Hyaenidae 1 Yes Yes (Alexander et al., 1995; Haas et al., 1996) 
Canidae 27 Yes Yes (Mueller et al., 2011; Woodroffe et al., 2012) 
Ursidae 6 Yes Yes (Nagao et al., 2012) 
Otariidae 1 Yes No (Barrett et al., 2004) 
Odobenidae 1 No Yes (Philippa et al., 2004) 
Phocidae 6 Yes Yes (Grachev et al., 1989; Kennedy et al., 2000)  
Mustelidae 18 Yes Yes (Keller et al., 2012; Williams et al., 1988) 

Mephitidae 1 Yes No (Gehrt et al., 2010; Helmboldt and Jungherr, 
1955)  

Procyonidae 4 Yes Yes (Hoff et al., 1974; Kazacos et al., 1981) 
Ailuridae 1 Yes No (Bush et al., 1976; Itakura et al., 1979) 

ARTIODACTYLA 
Suidae 1 No Yes (Kamao et al., 2012; Suzuki et al., 2015) 
Tayassuidae 1 Yes Yes (Appel et al., 1991; Noon et al., 2003) 
Cervidae 1 No Yes (Kamao et al., 2012; Suzuki et al., 2015) 

Phocine 
distemper 
virus 

CARNIVORA 

Otariidae 7 No Yes (Duignan et al., 2014) 
Odobenidae 1 No Yes (Duignan et al., 2014) 
Phocidae 12 Yes Yes (Duignan et al., 2014) 
Mustelidae 1 Yes Yes (Duignan et al., 2014) 

 



 

 

Morbillivirus Order Family No. of 
species 

Clinical 
disease/ 
pathology 

Antibodies Source 

Cetacean 
morbillivirus CETACEA 

Balaenopteridae 2 Yes Yes (Van Bressem et al., 2014) 
Delphinidae 18 Yes Yes (Van Bressem et al., 2014) 
Phocoenidae 1 Yes Yes (Van Bressem et al., 2014) 
Physeteridae 2 Yes Yes (Van Bressem et al., 2014) 
Ziphiidae 1 Yes No (Van Bressem et al., 2014) 

Measles 
virus PRIMATES 

Cebidae 2 Yes Yes (Munson, 2001) 
Callitrichidae >1 Yes Yes (Munson, 2001) 
Aotidae 1 Yes Yes (Munson, 2001) 
Pitheciidae 1 Yes Yes (Munson, 2001) 
Cercopithecidae >6 Yes Yes (Munson, 2001) 
Hylobatidae >1 Yes Yes (Munson, 2001) 
Hominoidea 4 Yes Yes (Munson, 2001) 

Rinderpest 
virus ARTIODACTYLA 

Suidae 4 Yes Yes (Kock, 2006; Plowright, 1982) 
Hippopotamidae 1 No Yes (Plowright, 1982) 
Giraffidae 1 Yes Yes (Kock, 2006; Plowright, 1982) 
Bovidae >29 Yes Yes (Kock, 2006; Plowright, 1982) 

Peste de 
petits 
ruminants 
virus 

ARTIODACTYLA 
Cervidae 1 Yes No (Munir, 2014) 

Bovidae 19 Yes Yes (Munir, 2014) 
CARNIVORA Felidae 1 No No (Balamurugan et al., 2012) 

 

  



 

Table 1.5. Summary of clinical findings in published accounts of canine distemper virus infection in captive tigers and other large felids. 

Died Recovered

Tiger 2 0 2?

At 4 weeks old, both cubs presented with anorexia, diarrhoea and vomiting. 
One died after 1 week. The other recovered, but after 5 months developed 
progressive neurological signs, which continued until euthanasia after 16 
months. 

Blythe et al. 
1983

Tiger 1 0 ?
Presented with diverse neurological signs (tremors, hypermetric gait, 
incoordination), which progressed for 2 months, after which the tiger was 
euthanised.

Gould and 
Fenner 1983

Tiger 2 4 ?

At Shambala Preserve, a 4 month old tiger was admitted with anorexia, 
respiratory signs and seizures. Seven months later a six month old tiger 
developed similar signs and was euthanized. Four tigers with respiratory 
signs survived.

Appel et al. 
1994

Tigers, 
lions, 
leopards 
and a 
jaguar

17 
(including   
4 tigers)

18   
(number of 

tigers 
unspecified)

74

Of 74 large felids at Wildlife Waystation, 35 developed respiratory, enteric 
and/or neurologic signs presenting in two ways:
1) Six cats presented with acute onset neurologic signs. One survived.
2) 29 cats presented with diarrhoea (1-2 weeks), and respiratory signs. 14 
recovered with supportive care and remaining 15 cats developed neurologic 
signs (lasting from 1-2 days, up to 2 weeks), of which 12 died or were 
euthanized.

Appel et al. 
1994

Tiger 5 2 ? Sudden onset of "mostly" progressive neurological signs lasting "several 
weeks to months”. CDV confirmed on conjunctival swab.

Zenker et al. 
2001

Tiger 2 0 4? Gasterointestinal signs in two 6 month old cubs lasting 2-4 days before 
death. Mother and one cub appeared unaffected.

Konjević et 
al. 2011

Tiger 3 9 22
12/22 tigers presented with diarrhoea, vomiting and respiratory signs, of 
which 2 died after 1-2 weeks. One survivor later died with neurologic signs 
afer 2 months.

Nagao et al. 
2012

Clinical cases Number 
exposed Clinical summary SourceSpecies
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the tiger surviving without supportive care. The extended period of infection in this case, 

may be analogous to a syndrome in domestic dogs referred to as ‘old dog encephalitis’ in 

which replication defective virus persists in the cerebral hemispheres and brainstem of 

mature dogs that have otherwise recovered from infection earlier in life (Greene and Appel 

2006). 

 

The status of CDV in the wider Felidae family is complex, with clinical disease and 

mortality described in two of the twelve extant genera (Panthera and Lynx, Appel et al. 

1994, Daoust et al. 2009, Meli et al. 2010, Origgi et al. 2012, RoelkeParker et al. 1996, 

Seimon et al. 2013), and antibodies detected from a further six without apparent clinical 

disease (Acinonyx, Caracal, Felis, Prionailurus, Leopardus and Puma, Fiorello et al. 2007, 

Ikeda et al. 2001, Munson et al. 2004, Thalwitzer et al. 2010, Uhart et al. 2012). Appel et 

al. (1974) demonstrated limited replication of CDV in experimentally challenged domestic 

cats, but a failure to transmit infection to other cats, or dogs (Appel et al. 1974). It has been 

suggested that the substitution of a single amino acid to the binding epitope of the CD150 

receptor, may explain the variable susceptibility seen in Canidae and Felidae (Ohishi et al. 

2014). Comparison of the amino acid residues of the Morbillivirus binding epitope of canid 

and felid CD150 molecules revealed substitutions at nine of 34 positions, of which three or 

four conferred an alteration in charge that could affect viral binding. A substitution at one 

of these nine positions (position 76) differentiated large felids (tigers, lions, and clouded 

leopards Neofelis nebulosa), from small felids (domestic cats, and two subspecies of 

leopard cat Prionailurus bengalensis). The positively charged residue found in large felids 

is also carried by domestic dogs, and may contribute to the susceptibility of these species, 

while the uncharged residue in small felids may limit the binding of wild type virus 

(Ohishi et al. 2014).  

 

Managing infectious disease in wild populations 

The first priority in approaching the management of infectious disease is to identify 

specific objectives for the programme, as these are the fundamental yardstick against 

which interventions should be measured. Outside of domestic animal or public health 

environments, the absolute control of an infectious disease is often unrealistic, and 

objectives are directed at limiting the impact on a defined host (Blancou et al. 2009). In the 

case of threatened species, interventions are usually intended to reduce the likelihood that 
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populations will decline to extinction due to the effects of an infectious disease. Since 

extinction is more likely in small populations, or those where isolation prevents 

recolonization following an outbreak, an obvious mitigation strategy may be to improve 

connectivity through the use of wildlife corridors. This approach is not without 

controversy, and it has been argued that corridors could facilitate the spread of a pathogen 

within a larger metapopulation leading to a wider extinction (Hess 1996). Modeling 

approaches have indicated that this is unlikely in wild situations, where infections spillover 

from an abundant reservoir (as in CDV), particularly when the force of infection is low 

(Gog et al. 2002, McCallum and Dobson 2002). 

 

Approaches to actively controlling the impact of an infectious disease on a threatened 

population will depend on the epidemiology of the pathogen concerned (Cleaveland et al. 

2007, McCallum 2012). Broadly, strategies focus on 1) reducing disease incidence in the 

reservoir (whether biotic or abiotic), 2) reducing spillover from the reservoir to the 

threatened host, or 3) reducing transmission or mortality within the threatened host 

population itself (Woodroffe 1999, Haydon et al. 2002, Laurenson et al. 2005). For 

pathogens with a biotic reservoir like CDV, reservoir-targeted strategies aim to moderate 

transmission by reducing the number of susceptible animals in the population, either 

through culling or vaccination (Woodroffe 1999, McCallum 2012). Culling of reservoir 

populations is rarely practical, or socially acceptable, and can have unforeseen 

consequences on the burden of disease (Donnelly et al. 2003, Streicker et al. 2012). 

Vaccination of domestic dogs is feasible, and can disrupt spillover into threatened 

populations (Cleaveland et al. 2006, Viana et al. 2015). Likewise, measures to isolate a 

domestic dog reservoir from a threatened population could be successful, either with 

physical barriers such as fences, or curtailment of activities (such as hunting) that facilitate 

contact between dogs and threatened species (Laurenson et al. 2005). Situations where 

wildlife contributes to the reservoir are more problematic, raising issues of vaccine safety, 

and efficacy as products are rarely tested on wild species, and responses may differ greatly 

from that of domestic animals. Delivery of vaccine doses to wild animals can also be 

challenging, due to the availability of environmentally stable vaccine products, and the 

logistical difficulty of administering doses to a sufficient proportion of the population to 

achieve control. Also, elimination of pathogens circulating on wide spatial scales cannot be 

achieved by local vaccination, which must then continue indefinitely, bringing 

considerable cost implications, or risking large outbreaks if coverage is disrupted 

(Laurenson et al. 2005).  
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Where the identity of the reservoir is unknown, or its vaccination or isolation is 

impractical, increasing the immune status of the threatened host may be the only 

management option available. This strategy has generally been applied in ‘emergency 

situations’, where ongoing outbreaks are likely to result in unacceptable losses (Gascoyne 

et al. 1993, Hofmeyr et al. 2000, Randall et al. 2006, Knobel et al. 2008, Timm et al. 

2009). These interventions can prove controversial, with claims that vaccination hastened 

the extinction of African wild dogs (Lycaon pictus) in the Serengeti (Burrows 1991, 

Burrows et al. 1994), despite a lack of supporting evidence (Woodroffe 2001). The 

availability of safe and efficacious vaccines is a major constraint (Laurenson et al. 2005, 

Connolly et al. 2013), particularly where opportunities to deliver booster doses are limited. 

However, in emergency situations, even low coverage strategies, which vaccinate a subset 

of the affected population can reduce the extinction probability substantially (Haydon et al. 

2006).  

 

How pathogens are maintained 

Identifying reservoir populations is an important precursor to the selection of control 

measures, and is aided by clear terminology in conceptualizing reservoir systems. For a 

population to maintain a pathogen indefinitely, it must exceed a critical community size 

(CCS), below which pathogen ‘fade out’ is likely due to the depletion of susceptible hosts 

over time (Bartlett 1960). In Tanzania outbreaks of CDV have occasionally resulted in 

large-scale mortality of lions, but the population is numerically insufficient to maintain the 

virus indefinitely, with outbreaks requiring spillover from more abundant reservoir hosts 

(Roelke-Parker et al. 1996, Viana et al. 2015). A reservoir is therefore one or more 

epidemiologically connected populations in which the pathogen can be permanently 

maintained and from which infection is transmitted to a defined target (such as an 

endangered population, Haydon et al. 2002). Individual populations that exceed the CCS, 

and can, therefore, maintain infection indefinitely are termed maintenance populations, 

although several non-maintenance populations could act synergistically to form a 

maintenance community. Finally, a source population is that which transmits infection 

directly to the target, and may either be a maintenance population, or be connected to the 

maintenance population as a transmission link to the target.  
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Although conceptually attractive, the CCS is extremely hard to estimate for free-living 

populations, therefore researchers must rely on numerous lines of evidence to identify 

likely maintenance populations (Viana et al. 2014). Analysis of data on population size and 

demographics may give an indication of their potential to maintain a pathogen. Generally, 

maintenance is more likely in populations that are large, well mixed, with a high rate of 

turnover. For short-lasting infections, like CDV, the detection of pathogens can be 

challenging but the presence of antibodies can provide useful indicators of disease 

incidence and prevalence, particularly in reference to the age structure of the sampled 

population. For rapidly evolving pathogens, chains of infection can give rise to genetically 

distinguishable strains, providing a means of tracing transmission between hosts, and an 

assessment of pathogen diversity in possible maintenance populations. Individually, these 

lines of evidence may be inadequate to describe reservoir structure, particularly for multi-

host pathogens (Viana et al. 2014). But when interpreted collectively, they may be 

sufficient to identify likely contributors to a maintenance population, and inform 

appropriate control measures.  

 

Study rationale 

Prior to this study, CDV had been detected in three cases involving sick tigers that 

displayed severe and progressive neurological signs (Quigley et al. 2010, Seimon et al. 

2013), and that a further five tigers carried neutralizing antibodies indicating prior 

infection with the virus (Goodrich et al. 2012). In addition, model simulations predicted 

that CDV infection could have an impact on the viability of tiger populations (Gilbert et al. 

2014), but the scale of this impact was dependent on the identity of reservoir species 

responsible for maintaining infection, the prevalence of infection within that population, 

and the frequency of transmission to tigers. Amur tigers coexist with domestic dogs and a 

number of wild carnivore species that are susceptible to CDV (Table 1.6), and represent 

potential contributors to CDV maintenance. The study utilized multiple lines of evidence 

including published, unpublished and newly collected material to assess the structure and 

demography of host populations, their serological patterns of CDV exposure, and 

phylogenetic relatedness of viruses from respective host groups. This information was used 

to determine which of the potential reservoir species may be contributing to the 

maintenance of CDV in the ecosystem of the Russian Far East, and whether these viruses 

were genetically related to those found in the tiger population.   
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Table 1.6. Carnivores of Primorskii Krai, adapted from Voloshina et al. (1999). 
Family English common name Scientific name Status
Canidae Raccoon dog Nyctereutes procyonoides Common
Canidae Grey wolf Canis lupus Common
Canidae Red fox Vulpes vulpes Common
Ursidae Brown bear Ursus arctos Common
Ursidae Asiatic black bear Ursus thibetanus Common
Mustellidae Asian badger Meles leucurus Common
Mustellidae Sable Martes zibellina Common
Mustellidae Yellow-throated marten Marte flavigula Common
Mustellidae Wolverine Gulo gulo Rare
Mustellidae Ermine Mustela erminea Rare
Mustellidae Least weasel Mustela nivalis Common
Mustellidae Siberian weasel Mustela sibrica Common
Mustellidae American mink* Neovison vison Common
Mustellidae River otter Lutra lutra Common
Felidae Leopard cat Prionailurus bengalensis Southern 

Primorye
Felidae Eurasian lynx Lynx lynx Common
Felidae Amur tiger Panthera tigris altaica 351-393 mature 

individuals
Felidae Far Eastern leopard Panthera pardus orientalis Southwest 

Primorye
Otariidae Northern sealion Eumetopias jubatus Rare
Otariidae Northern fur seal Callorhinus ursinus Common
Otariidae Spotted seal Phoca largha Common
Otariidae Ringed seal Pusa hispida Uncertain  

*Introduced non-native. 

 

The overall goal of this thesis is to compile an epidemiological evidence base that can be 

used by natural resource managers in the Russian Far East to select appropriate strategies 

for managing the effects of CDV on Amur tiger populations. At the outset, it was 

acknowledged that there would be considerable challenges inherent in reconstructing a 

complete epidemiological understanding of such a complex multi-host pathogen, with less 

than three years of fieldwork available, in an ecosystem where the disease was largely 

unstudied. For these practical reasons, it was decided to focus on the gaps in our 

understanding that were of greatest relevance to decision-makers.  In view of the practical 

limitations in controlling CDV in a wild reservoir, substantial involvement of wildlife in 

CDV maintenance was considered to have the greatest influence on available control 

measures. Therefore, determining whether wild hosts were important contributors to the 

maintenance of viruses sharing genetic identity with those found in tigers was a key focus 

of the project. Conversely, if wildlife were not involved in CDV maintenance, then control 

of the infection in domestic dogs may be the most cost effective means of mitigating the 

impact on tiger populations. Therefore, simultaneously the study aimed to determine 
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whether CDV was being maintained in dog populations, and to assess factors including 

patterns of ownership, dog demography, and vaccination status that would be essential to 

the design of possible control programmes. Findings were interpreted collectively to 

produce a qualitative picture of CDV epidemiology in the region and inform management 

recommendations aimed at minimizing the threat to remaining populations of Amur tigers.  
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Chapter 2 Project overview 

 

In 2003, the first case of canine distemper virus (CDV) in a free ranging Amur tiger 

(Panthera tigris altaica) was diagnosed in a sick tiger that died in the Russian Far East 

(RFE, Quigley et al. 2010). A further two fatal cases were confirmed in 2010, and 

questions were raised about the possible emergence of CDV in tigers, and the impact this 

may be having on population viability (Seimon et al. 2013). Analysis of tiger serum 

samples (n=40) collected between 1992 and 2004, found CDV-neutralizing antibodies in 

six tigers including the 2003 case (Goodrich et al. 2012). All of the exposed tigers were 

among 22 individuals sampled between 2000 and 2004, suggesting that the virus may have 

been a recent arrival in the ecosystem, or had recently adapted to enable infection of tigers. 

A population viability analysis that incorporated an epidemiological SIRD 

compartmentalized model (‘susceptible-infected-recovered/dead’) found that CDV could 

reduce the viability of Amur tiger, and disproportionally affected small populations 

(Gilbert et al. 2014). The present study was conceived as a means of augmenting the 

limited understanding of CDV ecology in the Russian Far East, providing information that 

could inform management decisions to limit the impact of the virus on Amur tiger 

populations.  

 

Research strategy 

Identifying reservoirs of infection is a challenging proposition. In situations that preclude 

experimental manipulation, it may be unrealistic to reach more than a presumptive 

conclusion on the identity of maintenance hosts. This is particularly true for multi-host 

pathogens like CDV, where several host species or populations may be contributing to 

pathogen persistence as members of a maintenance community. In the timeframe of a 

project of this scale, a qualitative understanding of CDV maintenance was considered a 

realistic outcome, and would be reached through examination of numerous lines of 

evidence. Determining the involvement of wildlife in CDV maintenance was a particular 

priority, due to the limits this would place on management options. To maximise available 

sources of evidence, a strategy was adopted that would capitalize on all forms of existing 

information and diagnostic material, as well as performing novel field research designed to 

fill gaps in current understanding. Specific approaches included:  



Chapter 2. Project overview  57 

1. Assessment of host population size, structure and demography – Pathogen maintenance 

is more likely in large, well-mixed populations, with high rates of turnover, where 

immunologically naïve young provide a ready supply of susceptible hosts.  The study 

aimed to characterize the composition and biology of the domestic dog population in 

Primorskii Krai, focusing on rural areas with the greatest opportunity for contact with 

tigers. 

2. Molecular characterization of CDV in potential host populations - Rapidly evolving 

pathogens like CDV accumulate mutations that can be used to infer likely transmission 

patterns, and assess the diversity of strains circulating in potential maintenance 

populations. Partial sequence data had previously been published from cases of CDV in 

three tigers from the RFE (114-430 bp in length, Seimon et al. 2013). Tissues from 

these tigers were available as a resource for possibly obtaining more extensive sequence 

data, as well as further untested archived samples, and novel samples collected during 

the course of the project. A variety of phylogenetic tools were considered, including 

topological interpretation of phylogenetic trees, use of molecular clock models, and 

more detailed inference of statistical parsimony networks (Templeton et al. 1992, 

Lembo et al. 2007), to provide varying degrees of insight into possible chains of 

transmission. The complexity of analytical techniques is largely dependent on the 

quality and quantity of available sequence data. Therefore, a broad strategy was 

adopted, analyzing a wide range of sample types, from tigers, other large carnivores, 

mesocarnivores and domestic dogs in order to maximize available sequence data and 

the conclusions that could be drawn from them.  

3. Patterns of exposure to CDV in host populations – The detection of pathogens like 

CDV, where infections are short-lived, can be very challenging, particularly in wildlife 

populations that are difficult to sample. In these situations, detection of antibodies 

indicative of prior exposure can be an informative sign that a pathogen is circulating in 

a population. Antibodies to CDV remain detectable for prolonged periods that may 

extend to years, or even the lifetime of the host (Greene and Appel 2006). In these 

situations, exposure of young animals can be a useful indicator of recent infection (once 

maternal antibodies titres have waned at approximately 12-14 weeks, Greene and Appel 

2006), and a means for comparing relative incidence on different temporal and spatial 

scales. 
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Study area 

The range of the Amur tiger currently comprises approximately 155,000 km2 of the Far 

Eastern maritime territories of Primorskii Krai, and Khabarovskii Krai (Figure 2.1, 

Hebblewhite et al.2014). Tigers in Russia have traditionally been monitored using snow 

track counts, a method that provides the most reliable index of population trends given the 

constraints of working in remote and challenging terrain (Hayward et al. 2002). Based on 

this approach the most recent estimate of adult and subadult Amur tigers numbers in the 

RFE was between 331 and 393 individuals in 2005 (Miquelle et al. 2007). Although 

recently extirpated as a breeding species from the Jewish Autonomous Region, and 

Amurskaya Oblast, dispersing individuals (particularly males), continue to be reported 

there, and a recent translocation programme in both territories shows some promise of 

future restoration (including one case of confirmed breeding in the Jewish Autonomous 

Oblast by 2015). Small numbers of Amur tigers (<20) continue to be recorded in Jilin and 

Heilongjiang Provinces of northeastern China, but these mostly represent an extension of 

the Russian population across the border (Hebblewhite et al. 2012). Although small 

numbers of samples were obtained from wild carnivores in Khabarovskii Krai and 

Amurskaya Oblast, this study primarily focused on the occurrence of CDV in carnivores in 

Primorskii Krai, as the territory contains the majority of the extant tiger distribution.  

 

Primorskii Krai runs approximately 900 km north-south along the spine of the low 

Sikhote-Alin Mountain chain (which rises to a height of 1,200 m above sea level). The 

territory is bordered by the Ussuri River and China to the west, and the Sea of Japan to the 

east, extending south to a short common border with North Korea. The landscape is 

dominated by taiga forest characterized by Korean pine (Pinus koraiensis), birch (Betula 

sp.) and Mongolian oak (Quercus mongolica), which constitutes suitable habitat for wild 

boar (Sus scrofa), sika deer (Cervus nippon) and red deer (C. elaphus) that constitute the 

main prey for Amur tigers (Hebblewhite et al. 2014). Mean monthly temperatures vary 

from -13.1 °C in January to 19.5°C in August, with 80% of precipitation (mean 650-800 

mm) occurring between April and November. The coast provides a moderating influence 

on winter temperatures, which average approximately 10 °C higher on the eastern slope 

than the west.  

 

The national census conducted in 2010 registered a human population of 1,956,497 in 
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Figure 2.1. a) Map of the Russian Far East, including main primary study areas defined by 25 
km buffers around three main protected areas. These included Southwest Primorskii 
(centred on the ‘Land of the Leopard’ National Park), Lazovskii (centred on Lazovskii 
Zapovednik) and SABZ (centered on the Sikhote-Alin Biosphere Zapovednik). Other (non-
study) protected areas are also illustrated, and include zapovedniks (strictly protected 
areas) and zakazniks (sanctuaries); b) Geographic distribution of the Amur tiger, based on 6 
km and 12 km buffers of snow track locations recorded in Primorskii Krai and Khabarovskii 
Krai during February and March 2005 (Hebblewhite et al. 2014); and c) human population 
densities based on the 2010 national census (Russian Federal State Statistics Service 2011), 
represented as a heatmap coloured according to the number of people per 1 km2 based on a 
smoothing radius of 40 km. 
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Primorskii Krai, of which 76% resided in urban areas, with the remainder in small rural 

settlements (Figure 2.1b, Russian Federal State Statistics Service, 2011). Populations are 

concentrated along the Ussuri River valley, and a development corridor that roughly 

connects the cities of Vladivostok and Ussuriysk in the south. This region of high 

population density acts as an effective barrier to the movement of tigers between the main 

Sikhote-Alin Mountain population, and a smaller population (16-21 individuals, Pikunov et 

al. 2003) in Southwest Primorskii, that extends into the low Changbaishan Mountains 

along the border with China (Henry et al. 2009). Away from urban centers, people reside in 

small rural communities, relying heavily on natural resources (including fish, wildlife and 

forest products) and smallholding cultivation for subsistence. Approximately 7% of tiger 

habitat receives some form of protection (Miquelle et al. 2005), and are free from human 

settlement. Much of the remaining forest has been selectively logged, and essentially all 

non-protected areas are utilized for hunting of ungulates, and in many areas also fur-

bearing mesocarnivore species.  

 

Although archived samples originated from many locations, prospective surveys of 

domestic dogs and wild mesocarnivores in 2013 and 2014 focused on three study areas that 

centered on protected reserves that support Amur tigers (Figure 2.1). These were selected 

to reflect a range of human population densities, with the strictly protected Sikhote-Alin 

Biosphere Zapovednik (SABZ, N44.8°, E135.7° to N45.7°, E136.8°) representing an area 

of low human habitation, Lazovskii Zapovednik (N42.9°, E133.7° to N43.4°, E134.2°) 

with a moderate human population, and Southwest Primorskii, centered on the Land of the 

Leopard National Park (N42.5°, E130.4° to N43.8°, E131.7°), which is surrounded by high 

numbers of human settlements. No settlements are found within the protected areas 

themselves, but do occur in the immediate vicinity of park boundaries. Study areas were 

defined by plotting a 25 km buffer around the boundaries of each protected area using R (R 

Development Core Team 2015), and were clipped to exclude marine areas, and non-

Russian territory.  

 

Project partners  

This diverse project was primarily funded by the Morris Animal Foundation and the 

Biotechnology and Biological Sciences Research Council, and has relied on contribution 

from a large number of organizations and individuals. A full list of all contributors is 
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provided in the Acknowledgement section, along with specifics of their roles and activities. 

For brevity, the following is limited to a list of primary project partners and their respective 

contributions:  

 

1. Wildlife Conservation Society (WCS) – Formerly known as the New York 

Zoological Society, WCS is based in the Bronx Zoo, and has maintained a national 

programme in Russia since 1992. Their work has focused on the conservation of 

Amur tigers and other threatened species in Primorskii. This has included intensive 

studies of tiger ecology in the Sikhote-Alin Biosphere Zapovednik (including 

placement of telemetry collars), and the handling of tigers as part of conflict 

resolution programmes. Samples collected as part of this work (1992-2014) were 

archived in Russia and at the Bronx Zoo and served as a critical resource to the 

success of the project. The author was employed by WCS for the duration of the 

project period.  

2. Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian Academy 

of Sciences (IBSS) – A research institute based in Vladivostok, with an active 

programme of ecological studies focused on terrestrial and marine ecosystems 

throughout the Far Eastern region. Researchers with IBSS contributed to many 

aspects of field and laboratory-based activities throughout the project. Archived 

samples collected from Southwest Primorskii during 2007 and 2008 (in 

collaboration with the National Cancer Institute, MY, USA) represented an 

invaluable resource for serological analyses.  

3. Zoological Society of London (ZSL) – Based at the Regents Park Zoo, ZSL have 

been active in conservation in Primorskii since 2001. The organisation has been 

collaborating with Lazovskii Zapovednik on a programme of tiger monitoring and 

protection since 2006. Participation from ZSL included all research in Lazovskii 

Zapovednik and surrounding areas, as well as many aspects of field surveys in 

other areas.   

4. University of Glasgow (UoG) – The project was supervised by Prof. Sarah 

Cleaveland, and Dr. Louise Matthews, at the Institute of Biodiversity, Animal 

Health and Comparative Medicine. Members of the MRC-Center for Virus 
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Research at the Institute of Infection, Immunity and Inflammation also provided 

support in aspects of serology, molecular characterization and Illumina sequencing. 

 
Ethical review and permitting 

A detailed ‘Animal Involvement Justification’ was included within the successful project 

proposal reviewed by the Morris Animal Foundation, and included all aspects of animal 

handling and sample collection from domestic and wild carnivores. The Institutional Care 

and Use Committee (IACUC), at the Bronx Zoo (Appendix III), performed an ethical and 

technical review of animal restraint/immobilization and sample collection techniques from 

wild carnivores. Approval for questionnaire surveys and sample collection from domestic 

dogs was provided by the State Veterinary Inspection, Primorskii Krai (Appendix IV). 

Project information was shared with all householders participating in household 

questionnaire surveys, and copies of signed informed consent forms were retained from all 

dog owners who agreed for samples to be collected from their dogs.  

 

Project challenges 

At the outset of the project, very little was known about CDV in the Russian Far East. 

Anecdotally, local veterinarians reported that CDV was “common” in domestic dogs in the 

region, but the only publications relating aspects of CDV epidemiology in Russia, in either 

the Russian or international literature related to the outbreaks affecting Baikal seals (Phoca 

sibirica) 2,000 km west of Primorskii Krai (Grachev et al. 1989, Mamaev et al. 1995, 

Butina et al. 2010), or the tigers in Primorskii Krai itself (Quigley et al. 2010, Goodrich et 

al. 2012, Seimon et al. 2013).  Due to this lack of baseline information, the project was 

designed to achieve a coarse understanding of CDV epidemiology in the study area, and 

focused on questions of greatest relevance to management decisions. With two years 

available for fieldwork (2012-2014), it was necessary to prioritize the potential host 

populations to focus on, and decide on the spatial scale on which to operate. Although a 

longitudinal approach, where a population is sampled repeatedly over an extended 

timescale provides a more detailed picture of disease incidence, this option was rejected in 

favour of a geographically extensive sampling strategy. This wider approach was selected 

in order to obtain a more representative assessment of CDV epidemiology across a large 
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portion of the tiger distribution, and including a range of domestic dog densities (that was 

assumed to follow a coarse index of human population densities).  

 

The use of archived samples enabled an assessment of CDV exposure over a wider 

timescale, and greatly increased the sample size available, particularly for large carnivore 

species. However, this introduced some limitations and possible biases to the available 

dataset. Large carnivore samples had been collected as part of research programmes (e.g. 

telemetry), or from animals captured during incidents of conflict resolution. Although 

extremely valuable, this opportunistic sample set had several shortcomings from the 

perspective of an epidemiological study. The number of samples available from different 

locations and time points was often insufficient to provide meaningful comparison. 

Potential biases may have arisen based on the exposure history of animals captured during 

research studies versus those in conflict situations. Furthermore, in an effort to maximize 

the number of samples for analysis, it was necessary to foster collaboration with multiple 

groups of researchers. In addition to the differences in study design, there was also 

variation in the data that accompanied archived samples, which limited the analyses that 

were possible. For instance, researchers used different approaches to categorize the age of 

animals, and in the case of mesocarnivores, this was often lacking. Wherever possible, data 

analysis has taken account of these shortcomings, and limited conclusions to findings that 

can be supported by available data.  

 

Many of the wild carnivores that form the base of this study are covered by regulations 

governing natural resources and endangered species that either slowed, or prevented 

planned activities. For instance, delays in the approval of permits covering the capture of 

mesocarnivores in one study area (SABZ) greatly reduced the availability of samples for 

comparison with other sites. Limitations in accessible laboratory resources within Russia 

required that samples be exported in multiple shipments, for analysis in international 

facilities. Each shipment required a lengthy process to acquire permits satisfying both 

domestic and international regulations (e.g. CITES). In one case, an application was 

denied, preventing the inclusion of important samples in the analyses. Similarly, shipment 

of archived samples between the United States and the United Kingdom proved a 

convoluted process, and in the case of some older samples, insufficient paperwork 

prevented the export of material from some animals. For this reason serological analyses 

were performed in two laboratories, which introduces questions of comparability. To 
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minimize this a full set of results were obtained from at least one laboratory for each of the 

three main host populations (domestic dogs, wild mesocarnivores and large carnivores), 

ensuring comparability within groups, even if comparison between groups remains an 

issue.  
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Chapter 3 Domestic dog demography and patterns 
of ownership in Primorskii Krai 

 

Abstract 

The structure and demography of domestic dog populations determine their potential to 

maintain pathogens such as canine distemper virus (CDV), and must be accounted for 

when designing control programmes. Identifying CDV reservoirs and the potential for 

inter-species transmission has become a priority following the recent death of several 

Amur tigers from CDV in the Russian territory of Primorskii Krai. Most dogs in the 

territory are owned, as extreme winter temperatures reduce survival of feral dogs. This 

questionnaire-based study collected baseline information on domestic dog demography and 

patterns of ownership adjacent to three protected areas that support tiger populations, and 

the nearby city of Ussuriysk. The primary objectives focus on aspects of ownership that 1) 

influence the potential for dogs to maintain CDV, 2) identify opportunities for CDV 

transmission between dogs and other species, including tigers, and 3) provide 

recommendations for the design of CDV control programmes. Features favouring CDV 

maintenance included high domestic dog densities within settlements (up to 673.4 

domestic dogs/km2 in the city), high canine reproductive rate, and low canine vaccination 

coverage with only 11.4% of dogs (n =2,369) receiving a CDV vaccination in the previous 

year. Inter-settlement movement of dogs (which may enhance dissemination of CDV) was 

generally low, primarily limited to young dogs, with 28.8% (n=2,332) sourced in other 

communities, and no movement reported for 93.1% following their acquisition (n=2,379). 

A large proportion of dogs were restricted from unsupervised movement, with only 16.9% 

given freedom to move and mix with other dogs on a daily basis. Overall 41.0% of dogs 

(n=2,324) were taken to forested areas where contact with wildlife could occur, and 

owners reported anecdotal accounts of direct interaction with tigers and wild 

mesocarnivores. Residence type was the strongest predictor of dog ownership, and 

vaccination strategies targeting households in cottages versus apartment buildings would 

reach greater numbers of dogs. 
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Introduction 

Following the death of several free-ranging Amur tigers (Panthera tigris altaica) from the 

Morbillivirus canine distemper virus (CDV) (Quigley et al. 2010, Seimon et al. 2013), 

concern has been growing as to the impact this may have on the species’ conservation 

status (Gilbert et al. 2014). With an estimated 331-393 adult and subadult wild Amur tigers 

(Miquelle et al. 2007), the population is likely to be too small to maintain CDV without 

transmission from more abundant susceptible hosts. Tigers coexist with a range of 

susceptible wild carnivore species, but in the human context, domestic dogs constitute the 

most conspicuous susceptible host in the Russian landscape. In many parts of the world, 

domestic dogs are considered the most important host of CDV, often contributing to the 

maintenance of the virus where vaccination is not routinely practiced (Greene and Appel 

2006, Acosta-Jamett et al. 2011, 2015, Belsare et al. 2014).  In others, CDV outbreaks 

continue to occur among susceptible wild carnivores despite routine dog vaccination, 

suggesting that sylvatic cycles in CDV maintenance may be important in some areas (Craft 

et al. 2008, Almberg et al. 2010, Prager et al. 2012, Woodroffe et al. 2012, Viana et al. 

2015).  

 

The maritime province of Primorskii Krai runs approximately 900 km north-south along 

the spine of the Sikhote-Alin mountain chain in the Far East of Russia. The national census 

conducted in 2010 registered a human population of 1,956,497, of which 76% resided in 

urban areas, largely concentrated in the south and west of the territory, with the remainder 

in small sparsely distributed rural settlements (Russian Federal State Statistics Service 

2011).  

 

Several key factors might contribute to the potential for domestic dogs to act as 

maintenance hosts for CDV in Primorskii. Fundamentally, the capacity for a population to 

maintain a pathogen indefinitely is dependent on it exceeding a critical community size 

(CCS), below which stochastic extinction of the pathogen is likely (Bartlett 1960). The size 

of the CCS is dependent on features of pathogen biology, particularly the reproductive 

number (R0, the mean number of secondary infections arising from an infected individual 

in a freely mixing, fully susceptible population), the biology of the host, including the rate 

at which new susceptible animals are born into the population, and host contact.  A 

reduction in R0, or birth rate will typically increase CCS, as it increases the threshold of 
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susceptibles required to initiate an epidemic (Earn et al. 2000, Metcalf et al. 2013). Field 

estimates of R0 and the CCS are lacking for CDV in domestic dog populations. Estimates 

for the related measles virus in human populations consistently fall within the range of 

250,000 to 400,000 people (Bartlett 1957, 1960, Black 1966). However, some features of 

host biology (such as the higher rate of canine reproduction), may suggest a lower CCS for 

CDV, while others (such as limitations in social contacts) may increase it.  

 

The distribution of domestic dogs in Primorskii is not homogenous, but rather animals are 

spatially clustered among settlements of varying size. Movement of dogs between these 

settlements would give rise to a metapopulation structure that would influence their 

capacity to maintain CDV (Grenfell and Harwood 1993). In the epidemiological context, 

metapopulations consist of multiple subpopulations of susceptible hosts that represent 

patches of ‘habitat’ for pathogens, and are loosely connected (e.g. through host movement) 

to enable the dispersal of the infection between patches (Grenfell and Harwood 1993). 

Morbilliviruses have played an important role in the development of metapopulation 

theory, particularly through factors that influence the persistence and spatiotemporal 

distribution of measles outbreaks (Bartlett 1957, Grenfell and Harwood 1993, Grenfell et 

al. 2001), and phocine distemper virus (Swinton et al.1998). A metapopulation might 

include patches of varying size, with some exceeding the CCS acting as a source of 

infection for smaller outlying patches, that experience outbreaks and fadeout as susceptible 

hosts are depleted (Bartlett 1957, Grenfell and Harwood 1993, Grenfell et al. 2001). 

Theoretically, other metapopulations might consist of patches that lie below the CCS, but 

exhibit a host demography and structure that could enable persistence (Swinton et al. 

1998). Therefore, information on host demography and patch connectivity is an important 

precursor to understanding the potential for a metapopulation to maintain a pathogen, 

indefinitely. This information can also be valuable in the construction of spatially explicit 

models, to inform the design of locally relevant vaccination programmes.  

 

Estimation of the CCS has remained a challenging proposition for most disease systems, 

but information on host populations and structure can provide a qualitative indicator of 

their potential to maintain a pathogen. Therefore, a better understanding of the 

demographic factors that might influence viral persistence is an important part of assessing 

the potential contribution of dogs to CDV maintenance in Primorskii. Key features include 

the number of dogs, their population density in settlements of varying size, estimates of 
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turnover and population trend, based on rates of reproduction and survival, and the 

movement of dogs within and between settlements.  

 

As a multi-host pathogen, the transmission of CDV between dogs and other susceptible 

host species or communities may play an important role in the dynamics of the virus. In 

Primorskii there are two main wild populations to consider that can be broadly categorized 

based on their relative body size. Large-bodied wild carnivores, notably Amur tigers, but 

also leopards (Panthera pardus orientalis), Eurasian lynx (Lynx lynx), grey wolves (Canis 

lupus), brown bear (Ursus arctos) and Asiatic black bear (U. thibetanus) occur in low 

densities in populations that likely fall below the CCS. The environmental stability of CDV 

is relatively low, and transmission is likely to require direct contact between an infectious 

and susceptible host (Appel 1987, Greene and Appel 2006). In the case of tigers, direct 

interactions with domestic dogs are likely to be limited to incidents of predation, which 

might occur on the periphery of settlements, or when dogs encroach on tiger habitat for 

purposes such as recreation or hunting.  

 

There are also several species of medium and small-bodied wild carnivores (from here on 

referred to as ‘mesocarnivores’) that are found widely throughout Primorskii. These 

abundant mesocarnivore species include red foxes (Vulpes vulpes), raccoon dogs 

(Nyctereutes procyonoides), Asian badgers (Meles leucurus) and sable (Martes zibellina). 

Interactions between dogs and mesocarnivores may be more complex than between dogs 

and large carnivores, and include agonistic interactions, such as encounters over common 

food resources. Although CDV infection is common among many species of 

mesocarnivore throughout the world, it can be difficult to quantify their contribution to 

CDV maintenance, particularly where the infection is poorly controlled in domestic dogs. 

In the United Kingdom, routine vaccination has almost eliminated CDV from domestic 

dogs (Walker et al. 2014), and infection is now rare or absent in Eurasian badger (M. 

meles) populations (Delahay and Frölich 2000). In contrast, CDV infections continue to be 

detected in dogs, badgers and other mesocarnivores on mainland Europe (Alldinger et al. 

1993, Benetka et al. 2011, Origgi et al. 2012, Nouvellet et al. 2013), indicating the 

continued circulation of CDV in domestic and wild hosts. In Tanzania, large scale 

vaccination of dogs around the Serengeti National Park reduced the size of domestic CDV 

outbreaks, but exposure continued in lions (P. leo), suggesting that wild carnivores 

remained a source of infection for lions (Viana et al. 2015). Together, these observations 
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suggest that the role of mesocarnivores in CDV maintenance may vary with location, and 

emphasizes the importance of interactions between dogs and wild carnivores to 

understanding the local epidemiology of CDV.  

 

The availability of effective vaccines against CDV for dogs has contributed to efficient 

control of the disease in many parts of the world, leading to near elimination where dogs 

are routinely inoculated (Norris et al. 2006, Walker et al. 2014). This contrasts with areas 

where uptake of vaccines is low, and CDV is allowed to circulate unchecked (Cleaveland 

et al. 2000, Millán et al. 2013). The most widely used vaccines are based on modified live 

viruses, for which a primary course of two doses 2 to 4 weeks apart is recommended once 

maternal antibodies have waned at 12-14 weeks (Greene and Appel 2006). Thereafter 

booster doses are recommended at least every three years due to reports that older 

vaccinated dogs may contract infections (Greene and Appel 2006), although other studies 

were unable to find a decline in protective titers as much as 9 to 15 years later (Bohm et al. 

2004). Therefore, it is important to assess the level of reported CDV vaccination in the dog 

population in Primorskii, and to determine the reasons why some owners may fail to 

vaccinate their dogs. Looking ahead to the possible design of vaccination programmes, it 

would be useful to identify determinants that could be used to predict the distribution of 

dogs among households, in order to improve the targeting of control measures, and 

predictors of higher vaccination coverage.  

 

The ultimate objective of this chapter is to determine whether the structure and 

demography of the domestic dog population in Primorskii Krai favours the maintenance of 

CDV, and to assess opportunities for viral transmission with populations of tigers and other 

wild carnivores. In anticipation that domestic dogs may prove to be maintaining CDV, and 

acting as an important source of infection for tigers, this chapter also assesses the current 

usage of CDV vaccines, as a basis for informing any future vaccination programmes. 

Although the maintenance of CDV would require the dog population to exceed a CCS, it is 

not possible to accurately predict how large this population would need to be, as the size of 

the CCS itself depends on the structure and population dynamics of the host (Viana et al. 

2014). However, it is possible to make some general predictions about the features of a 

population that would favour maintenance. Large populations are clearly more likely to 

exceed the CCS required to maintain a pathogen, and therefore estimates of population size 

represent a critical starting point when assessing maintenance potential. Maintenance also 
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requires a pool of susceptible hosts, which must be replenished fast enough to avoid 

pathogen extinction through stochastic processes during the troughs between outbreaks. As 

CDV invokes an immunity that may persist for the lifetime of those that survive infection, 

replenishment of the susceptible pool is dependent on the introduction of naïve juveniles, 

and therefore maintenance is favoured in a population that reproduces rapidly, and where 

vaccination coverage is low. For pathogens like CDV, where transmission requires direct 

contact, populations must be well mixed to insure that R0>1, thus high dog densities and a 

freedom to move and interact with other dogs would be key features of a CDV 

maintenance population. Finally, for hosts that are distributed within a metapopulation 

structure, local persistence may be impossible yet regional maintenance can be achieved 

through recolonization (‘rescue effects’) where local outbreaks occur asynchronously. For 

a dog population distributed in settlements, these rescue effects require a loose 

connectivity, with at least some movement of dogs between settlements.  

 

The objectives of this chapter are therefore to 

1. Describe the features of dog ownership and demography that would favour the 

maintenance of CDV in the domestic dog population of Primorskii Krai, including 

assessments of: 

i. Dog population size. 

ii. Dog population density, at settlement and landscape levels. 

iii. Dog population turnover (rates of reproduction and mortality). 

iv. Dog movement within settlements. 

v. Dog movement between settlements. 

2. Determine whether there have been changes in the numbers of dogs in Primorskii 

Krai during the preceding decade that might explain the apparent increase in tiger 

exposure to CDV since 2000. 

3. Document opportunities for inter-specific transmission, when dogs come into direct 

or indirect contact with tigers and other wild carnivores, including assessments of: 

i. Dog access to forested areas. 

ii. Anecdotal reports of contact between dogs and tigers and/or other wild 

carnivores. 

4. Assess the levels of CDV vaccination reported by owners, and reasons for failing to 

vaccinate. 
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Extreme winter temperatures in Primorskii, which regularly dip below -15 C limit 

opportunities for dogs to subsist without human care, and as a result feral dogs are limited 

or absent, particularly outside urban centers. For this reason, this study concentrated on 

owned dogs, as these constitute the majority of dogs within the province.  

 
Methods 

The surveys focused on three study areas that centered on protected reserves that support 

Amur tigers (Figure 3.1). These were selected to reflect a range of human population 

densities, with the strictly protected Sikhote-Alin Biosphere Zapovednik (SABZ, N44.8°, 

E135.7° to N45.7°, E136.8°) representing an area of low human habitation, Lazovskii 

Zapovednik (N42.9°, E133.7° to N43.4°, E134.2°) with a moderate human population, and 

Southwest Primorskii, centered on the Land of the Leopard National Park (N42.5°, 

E130.4° to N43.8°, E131.7°), which is surrounded by high numbers of human settlements. 

No settlements are found within the protected areas themselves, but do occur in the 

immediate vicinity of park boundaries. Study areas were defined by plotting a 25 km 

buffer around the boundaries of each protected area using R (R Development Core Team 

2015), and were clipped to exclude marine areas, and non-Russian territory. 

 

Dog densities were expected to correlate with human distribution, and so human census 

data were used for the selection of study settlements (Butler and Bingham 2000, Gompper 

2014). Human census data was available for 2002 and 2010, with populations distributed 

among 83 extant settlements within the three 25 km buffers in 2010 (consisting of four 

around SABZ, 15 around Lazovskii and 64 in Southwest Primorskii, Table 3.2). A random 

selection of 26 settlements was identified for the survey, consisting of three settlements 

around SABZ, seven around Lazovskii, and 16 in Southwest Primorskii. Settlements were 

assigned to categories based on the number of residents reported in the 2010 census as 

villages (consisting of 1,000 people or fewer), towns (consisting of more than 1,000 

people, but fewer than or equal to 10k), large towns (consisting of more than 10k people 

but fewer than or equal to 100k), or cities (more than 100k people). Selected settlements 

included 22/71 villages, 3/11 towns, and the only large town within the study areas. The 

study areas contained no cities, therefore the city of Ussuriysk situated less than 20 km 

from the Southwest Primorskii study area was also included in order to collect data 

describing dog ownership in urban areas. 
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Figure 3.1. Map illustrating the location of study areas Sikhote-Alin Biosphere Zapovednik 
(SABZ), Lazovskii Zapovednik, and Southwest Primorskii. Protected areas are illustrated in 
green, and 25 km buffers in orange. Study settlements are illustrated in red, and non-study 
settlements in yellow. The city of Ussuriysk is indicated by a blue square. 
 

Target household sample sizes were selected using the ‘pwr’ package in R (Champely 

2015). A minimum sample size of 389 households per study area was selected using a two-

tailed test to detect differences in proportional responses to questions of 10%, with an 

expected response of 50% (which maximizes required sample size), at a power of 80% and 

a 95% significance level (Figure 3.2).   

 

A questionnaire was developed based on guidelines published by the World Health 

Organization and the World Society for the Protection of Animals (1990), and was 

designed to collect information on dog and cat ownership patterns and demography. 
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Figure 3.2. Illustrates the relationship between sample size and power, for detecting 
differences in proportional responses during questionnaire surveys of 10-25%, at a 95% 
significance level.   
 

Questionnaires were developed following an initial pilot survey in June and July 2012, 

consisting of preliminary surveys of households in Southwest Primorskii and SABZ to 

assess the receptiveness of dog owners, and identify key questions. Questions were 

translated into Russian, and then back-translated to ensure consistency. Draft 

questionnaires were then adapted to produce a final questionnaire following initial trials 

among householders in SABZ during November 2012. Final questionnaires were used 

during visits to all 26 settlements during November 2012, June 2013 and October 2014. 

Interviewers visited all residences in villages, explained project objectives to householders 

and requested their compliance in completing the surveys irrespective of whether they 

owned dogs. In towns and large towns, it was impractical to survey all residences. In these 

settlements a subset of residences were randomly generated using the guidelines published 

by the World Society for the Protection of Animals (2007). Briefly, settlement maps were 

prepared, dividing the town into blocks, each containing a similar number of households 

(approximately 20-30, based on a visual assessment using Google Earth imagery). Blocks 
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were assigned one of four colours, such that no adjoining blocks were represented by the 

same colour. Survey households were identified by randomly selecting one of the colours, 

thus ensuring a random selection of households across the whole settlement. Once all 

blocks of a given colour had been visited, interviewers moved on to blocks of an additional 

randomly selected colour as time permitted, to maximize numbers of residences visited.  

 

Interviews were conducted in Russian, by teams of at least two veterinary undergraduate 

students from the Primorskaya State Academy of Agriculture. Teams were supervised by 

the author on a rotational basis, to improve consistency in interview technique. 

Interviewers were trained to avoid leading questions and were encouraged to maintain 

awareness for inconsistencies, and to revisit points of confusion by approaching questions 

in a different manner until answers were resolved.  

 

Interviews consisted of a list of questions that were completed in a semi-structured manner, 

allowing householders the freedom to answer inquiries on a conversational basis in any 

order they wished, before returning to unanswered sections. Questions were designed to 

obtain data at the level of the household, and on individual dogs and cats currently living in 

the residence. Details of questions pertaining to cats will not be reported further here, but 

are provided in Appendix V. Household data included residence type (typically apartment 

or cottage), the number of adult and child residents (<18 years old), and the number of 

dogs, and other domestic animals currently owned. Householders were also asked how 

many dogs they owned ten years ago to identify any temporal trends in dog ownership. 

Data collected on individual dogs included their age, sex, history of neutering and reason 

(or reasons) for ownership. Additional questions focused on the reproduction of female 

dogs, including current reproductive status (i.e. whether pregnant or lactating), number of 

litters within the last 12 months, number of pups in the last litter, and fate of all puppies in 

the last litter (e.g. alive and present, given away, died through trauma or sickness, 

euthanized etc.). Other questions addressed the movement of dogs, including their origin 

(local or from other settlements), frequency of movement beyond the settlement (never, 

rarely, at least annually, at least monthly, at least weekly), and freedom to roam 

unsupervised beyond the property boundaries (never, rarely/sometimes, part of the day, or 

all day). Owners were also asked whether they took their dogs to the forest, to assess their 

opportunity for contact with tigers. Data on vaccination history was limited to verbal 

responses, as vaccination certificates were rarely available and included questions on 
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whether dogs had received vaccines against CDV and rabies, and the approximate date of 

last vaccination. Those owners who reported that their dogs had not been vaccinated within 

the last year were asked for their reasons. The full questionnaire is provided in Appendices 

VI and VII.  

 

An urban questionnaire was prepared to collect more limited data describing ownership 

within the city of Ussuriysk, and focused on assessing the numbers of dogs and cats owned 

by city residents (Appendix VIII). In such a large community it was considered impractical 

to survey a representative sample of households through door-to-door visits, therefore 

surveys were conducted among people out in the community in areas where most residents 

were assumed to visit.  This included passers by and shoppers interviewed along major 

thoroughfares, transport hubs and outside popular groceries. Surveyors approached every 

adult passer-by to request their compliance in completing a short survey, and respondents 

were assumed to comprise a representative cross section of the city population. 

Interviewees were asked to provide their settlement of residence, the number of adults and 

children within their household, the type of residence (cottage or apartment), the number of 

dogs and cats currently owned, and the number of dogs owned a decade earlier.  

 

Once data had been entered into electronic format, errors and inconsistencies were 

identified using the package ‘editrules’ in R (de Jonge and van der Loo 2013), and then 

corrected with reference to the original questionnaires. The human population growth was 

estimated for each study settlement using the census figures from 2002 and 2010. These 

growth estimates were used to extrapolate the 2010 census figures, to obtain estimated 

population sizes at the start of the study on 6 November 2012. Ratios of humans to dogs in 

surveyed households were used to estimate total numbers of dogs in each settlement, and 

also used as the basis for extrapolating numbers of dogs in each study area and the whole 

province at the start of the study in 2012. For this purpose, the distribution of human to dog 

ratios for settlements of each size category were obtained by resampling the data using a 

subsample of 100 households in each settlement size category, through 1,000 bootstrap 

replicates. These were fitted to a gamma distribution, which was then used to estimate the 

number of dogs in all settlements in each study area, and throughout Primorskii, across 

1,000 replicates. Dog densities were calculated at the landscape and settlement level, by 

dividing the number of dogs estimated in each study area or settlement with their 

respective areas. The area of each settlement was obtained by calculating 95% kernel 
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distributions (based on an ad hoc smoothing parameter for a bivariate normal kernel, 

Worton 1989) around all surveyed households using the package ‘adehabitatHR’ in R 

(Calenge 2006). Household locations were not collected during the urban questionnaire 

survey, and so the area of Ussuriysk was estimated using the polygon tool in Google Earth 

Pro version 6.0.1.2032 (beta).  

 

Expected dog lifespan was estimated using the methods outlined in Caughley (1977).  

Briefly, tables of life history were prepared for dogs, listing the numbers of live animals 

recorded in each age category (by year), and the number of deaths in each age category in 

the preceding year. The survivorship function Lx for each age category was calculated 

using the formula: 

!! =
!! +  !!!!

2  
 

Where lx + lx+1 is the total number of animal-years lived by the cohort from age x to x+1, 

which is divided by two to give Lx at the midpoint of the year. The total number of animal 

years from year x until all animals had died (Tx) was then calculated according to:  

!! = ∑!! − !!!! 

 

Life expectancy for age category x (ex) was then calculated using: 

!! =
!!
!!

 

 

Mean life expectancy was therefore estimated at the life expectancy for age class 0 years.  

 

Before constructing multivariable models, a subset of cleaned data was prepared from the 

raw data, which excluded outcome variable entries where information on the appropriate 

predictor variables was incomplete. Data were tabulated for cleaned and raw data subsets, 

to identify any changes in the distribution of observations for each predictor variable that 
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may have occurred during the cleaning process (Appendices IX, X, XI, XII). Cleaning had 

little effect, amounting to ≤1.7% difference between raw and cleaned datasets for each 

non-numeric predictor variable.  

 

Multivariate generalized binary logistic regression models were prepared to identify 

explanatory variables that were significantly associated with the following outcome 

variables: dog ownership (‘dog owning’ or ‘non-dog owning’ at the household level), 

recent CDV vaccination (‘vaccinated’ or ‘not vaccinated’ within the previous year, at the 

individual dog level), origin (‘local’ or ‘non-local’ at the individual dog level), and 

roaming (‘roaming allowed’ or ‘roaming never allowed’ at the individual dog level). 

Explanatory variables included study area, community type, residence type, number of 

people within residence (adults and children), presence of children, cats, poultry, and 

livestock, age, gender, whether the dog was a guard, a hunting dog, or a companion 

animal, and origin. Details of explanatory variable categories used for each outcome 

variable are provided in Table 3.1. Settlement was used as a random effect for the outcome 

variable dog ownership, and household was used as a random effect for recent CDV 

vaccination, origin and roaming. Models were prepared using a forward selection process, 

and Akaike information criterion (AIC) values were used to assess model quality. The final 

model was identified when addition of explanatory variables did not reduce AIC values 

further. Odds ratios were estimated as a measure of association between explanatory and 

outcome variables expressed within 95% confidence limits.  

 

Results 

A total of 2,576 rural questionnaires were completed across the 26 study settlements, and 

1,461 urban questionnaires in the city of Ussuriysk. These included 523 households in the 

SABZ study area, 616 in Lazovskii and 1,437 in Southwest Primorskii (Table 3.2). Census 

figures from 2002 and 2010 were used to project the number of residents in each 

settlement on the first day of the study in 2012. Due to negative population growth, the 

projected 2012 population for one very small settlement (Poyma) was estimated to be zero, 

and since this site was still settled in 2013, the population from the 2010 census was used. 

Mean survey coverage across the 26 study settlements, based on the number of people in 

surveyed households as a percentage of total people projected in 2012 was 62.8% (SD 
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Table 3.1. Explanatory variables used to assess the domestic dog outcome variables 
ownership (Own.), vaccination (Vacc.), origin (Orig.), and roaming (Roam.), using 
multivariate generalized binary logistic regression models.

Own. Vacc. Orig. Roam.
Southwest*
Lazovskii
SABZ
Village*
Town
Large town
Apartment*
Cottage

People in house Numeric Number of people ✓ ✓ ✓ ✓
No*
Yes
No*
Yes
No*
Yes
No*
Yes

Age Numeric Age in months ✓
Female*
Male
Non-guard*
Guard
Non-hunter*
Hunter
Non-companion*
Companion
Local*
Non-local

Outcome variables

Levels
Explanatory 
variable

✓ ✓ ✓ ✓

Variable 
type

Residence type

Community Type

Study Area

✓ ✓

Categorical

Categorical

Categorical

Categorical

✓ ✓

✓ ✓ ✓ ✓

Children in house

CategoricalSource

Companion dog

Hunting dog

Guard dog

Categorical

Categorical

Categorical

Categorical

✓ ✓

Gender

Livestock owner

Poultry owner

Cat owner Categorical

Categorical

Categorical

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓

✓ ✓ ✓

✓ ✓

✓ ✓ ✓ ✓

✓ ✓

 
* Indicates reference level for categorical variables.  

 

54.2%). Coverage was lowest in the largest settlements surveyed, Plastun (6.2% with 5,123 

people projected in 2012), and Slavyanka (10.4% with 13,776 people projected in 2012). 

The number of people in surveyed households exceeded the projected 2012 population 

figures in two of the smallest survey settlements (Poyma and Razanovka), suggesting that 

the populations in these settlements may have stabilized or increased after the 2010 census. 

A total of 1,156 respondents to the urban questionnaire reported residence in Ussuriysk 

(79.1%, n = 1,461), with remaining respondents residing in 82 other settlements. The 

Ussuriysk respondents represented households containing 0.73% of the population of 

158,067 people projected to reside in Ussuriysk in 2012. 
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Dogs and cats were the most commonly kept domestic animals in the rural households 

surveyed, with the exception of chickens (Table 3.3). Median human to dog ratios were 

1.73 in villages (SD=0.81, n=22), and 2.47 in towns (SD=0.62, n=3). Only one large town 

(Slavyanka) was present within the study area, which had a human to dog ratio of 10.21. 

The human to dog ratio in the city of Ussuriysk was 5.05. There was a greater number of 

dogs in Southwest Primorskii, than Lazovskii and SABZ (Table 3.2). Across the whole of 

Primorskii there were estimated to be 467,224 dogs, (CI: 442,549-496,933) and 555,778 

cats, (CI: 518,890-594,211), owned by a projected 1,926,447 people at the start of the 

survey in 2012 (Table 3.2). 

 

The three study areas were calculated to cover 11,964 km2 in SABZ, 5,138 km2 in 

Lazovskii, and 7,965 km2 in Southwest Primorskii, which equated to overall dog density 

estimates of 0.3 dogs/km2 (CI: 0.3-0.4 dogs/km2), 1.1 dogs/km2 (CI: 1.0-1.3 dogs/km2) and 

2.5 dogs/km2 (CI: 2.3-3.0 dogs/km2) respectively. Dog density within the settlements 

themselves varied widely (Table 3.4, mean=120.0 dogs/km2, SD=103.4), and was highest 

in Slavyanka, the only large town in the study areas, with 458.5 dogs/km2, and in the city 

of Ussuriysk with a density of 673.4 dogs/km2.  

 

The number of dogs owned by surveyed households across the 26 study settlements was 

2,438, and these households reported owning a total of 1,862 dogs a decade earlier. This 

equated to a mean human to dog ratio of 3.14 (SD=1.68) in 2002, and 2.36 (SD-1.79) 

during the survey in 2012, indicating a per capita increase in dog ownership. However, 

since the combined human populations of all study settlements declined from 36,827 

people in 2002, to 32,519, the total number of dogs present in the study settlements 

changed little during this time. The projected number of dogs present across all 26 study 

settlements was 8,248 in 2002, and 8382 in 2012, equating to an increase of only 1.62%. 

 

Overall 57.4% of residences visited were dog-owning households (DOHH, n=2,576), and 

mean number of dogs per DOHH was 1.65 (SD=1.04, n=1,479), with 41.9% of DOHH 

supporting more than one dog. The best fit multivariate model found that dog ownership 

was most likely in households that were cottages, and those which also owned cats, poultry 

and other livestock, and increased with the number of people in the residence (Table 3.5, 

Appendix XIII). Conversely, dog ownership was less likely in towns and large towns than 



 

Table 3.2. Summary of survey coverage in the three study areas, Sikhote-Alin Biosphere Zapovednik (SABZ), Lazovskii Zapovednik, and Southwest 
Primorskii. Human populations within each study area are derived from national censuses conducted in 2002 and 2010, and are extrapolated to estimate 
human populations at the start of the survey on 6 November 2012. Mean human to dog and mean human to cat ratios for villages, towns, and large towns 
are derived from survey data, and used to estimate dog and cat numbers at the start of the survey in 2012, with 95% confidence intervals based on a 
bootstrap analysis. 

*Includes 

households surveyed in Ussuriysk as part of urban questionnaire. 

  

Study Area

Number of 
settlements 
in study 
area

Number of 
settlements 
surveyed

Number of 
households 
surveyed

Number of 
people in 
surveyed 
households

Human 
population 
census in 
2002

Human 
population 
census in 
2010

Estimated 
human 
population 
in 2012

Estimated 
dog 
population 
in 2012

Estimated 
cat 
population 
in 2012

3,896 4,032
(CI: 3,379    
to 4,491)

 (CI: 3,439   
to 4,742)

5,869 5,917
(CI: 5,241    
to 6,636)

(CI: 5,159    
to 6,880)

19,914 20,777
(CI: 18,608  
to 21,435)

(CI: 19,183  
to 22,494)

467,224 555,778
(CI: 442,549 
to 496,933) 

(CI: 518,890 
to 594,211)

58,374 57,638
Southwest 
Primorye 64 16 1437 3,732 61,231

SABZ 4 3 523 1,260 11,355 9,800 9,399

Lazovskii 15 7 616 1,555 17,516 14,235 13,390

26653
Primorye 
total 1,926,9471,956,4972,071,2109,869*3,732*
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Table 3.3. Numbers of people and animals in surveyed households in each study area. 
Southwest Lazovskii SABZ Total

People 3,732 1,555 1,260 6,547
Dogs 1,210 739 489 2,438
Cats 1,194 729 517 2,440
Pigs 271 147 11 429
Cattle 283 82 37 402
Sheep 145 5 1 151
Goats 75 19 6 100
Horses 67 2 6 75
Rabbits 328 233 226 787
Chickens 5,957 3,706 1,963 11,626
Ducks 134 104 53 291
Geese 314 75 59 448
Turkeys 51 45 25 121
Guineafowl 0 10 0 10
Quail 10 0 0 10
Parrots 0 1 0 1
Lizards 0 1 1 2

 

 

in villages. Owners stated one or more reasons for keeping dogs (n=2,396 dogs), the most 

common of which was for guarding property (67.5 %), followed by companionship (38.3 

%), or for hunting (5.8 %). 

 

Mean age was 4.49 (SD=3.82, n=1,652) for male dogs, and 4.57 years (SD=3.87, n=740) 

for females. The expected lifespan of dogs at birth (mean age at death) was estimated to be 

3.39 years, but dogs surviving to one year of age have a mean life expectancy of 6.66 years 

old. A population pyramid illustrating the age and sex distribution of dogs in the survey, 

exhibited a wide base typical of a rapidly reproducing population, and moderately convex 

sides indicating a high death rate (Figure 3.3). The dog population was heavily skewed 

toward males, with a male:female ratio of  2.24:1, and was a reflection of the selective 

euthanasia of female puppies as the primary means of population control. Only 0.5% of 

male dogs (n=1,653), and 1.8% of females (n=741) were reported to have been sterilized. 

 

Owners reported on the breeding status of 703 bitches over the previous year, of which 612 

were of breeding age (taken to be 1 yr or older). Of these, 279 bred at least once in the last 

year, representing 45.6 % of breeding age females. These bitches had a total of 365 litters 

in the previous year, with a mean litter size of 4.5 (SD=2.4, n=305). Owners reported that 



 

Table 3.4. Summary of descriptive statistics for survey settlements in each of the three study areas: Sikhote-Alin Biosphere Zapovednik (SABZ), Lazovskii 
Zapovednik (LZ), and Southwest Primorskii (SW). 

Study 
area 

Settlement 
name 

Census 
2010 

No. 
households 

surveyed 

No. people 
in survey 

households 

No. dogs in 
survey 

households 

Dog 
density 

(dogs/km2) 

Apartments 
(%) 

CDV 
vaccine 

coverage 
(%) 

Rabies 
vaccine 

coverage 
(%) 

SABZ Plastun 5,350 130 318 92 205 63.1 19.2 20.7 
SABZ Taejnoye 67 17 40 32 35 0 0 0 
SABZ Terney 3,590 376 902 365 100.1 5.6 42.9 58.5 
SABZ TOTAL 9,007 523 1260 489 0.3 19.7 35.8 47.4 
LZ Chistovodnoye 106 17 36 31 28.3 0 42.9 20 
LZ Danilchenkovo 176 19 66 25 127.5 0 0 0 
LZ Kamenka 154 29 63 50 63.9 0 50 50 
LZ Kievka 518 59 161 88 114.7 0 36.8 46.7 
LZ Kishenevka 160 43 114 57 52.6 0 14.3 0 
LZ Lazo 3,434 443 1,104 478 231.5 21.7 45.3 44.8 
LZ Svobodnoe 26 6 11 10 42.9 0 33.3 0 
LZ TOTAL 4574 616 1555 739 1.1 15.6 40.3 38.7 
SW Baranovskii 439 103 241 71 118 55.3 38.5 84.1 
SW Bezverkhovo 889 74 231 93 141.3 18.9 41 46 
SW Devatyy-Val 658 104 286 89 123.4 28.9 21.9 25 
SW Krounovka 594 85 208 128 189.5 0 54.3 39.3 
SW Lebedinoe 21 2 7 5 73.7 0 0 0 
SW Nejhino 435 88 242 130 227.6 0 17.6 27.3 
SW N. Lvovskoe* 148 49 111 79 38.7 0 43.3 89.6 
SW Olenevod 823 152 439 174 276.1 32.9 35.8 56.2 
SW Ovchinnikovo 71 14 33 31 64.5 0 40 0 
SW Perevoznoye 284 76 193 85 40.2 13.2 50 58.3 



 

 
 

Study 
area 

Settlement 
name 

Census 
2010 

No. 
households 

surveyed 

No. people 
in survey 

households 

No. dogs in 
survey 

households 

Dog 
density 

(dogs/km2) 

Apartments 
(%) 

CDV 
vaccine 

coverage 
(%) 

Rabies 
vaccine 

coverage 
(%) 

SW Poyma 6 4 9 8 20 0 80 80 
SW Razanovka 47 31 75 65 1 0 31.2 60 
SW Slavyanka 14,036 564 1,430 140 458.5 94.2 40.3 40.9 
SW Steklozavodsky 151 25 67 20 125.7 36 45.5 75 
SW Sukhanovka 76 15 29 9 12 73.3 0 0 
SW Timofeevka 260 51 131 83 209.6 0 28 37 
SW	 TOTAL 18,938	 1,437	 3,732	 1,210	 2.5	 49.5	 36.4	 47.5	

 
* Nikolo Lvovskoe
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the majority (48.8%, n=1,354) of pups were given away, with 33.6% being euthanized, 

7.6% being kept by the owners, 6.4% dying of accidental causes, 1.6% dying of sickness, 

and 1.9% where outcomes were reported as “other” or “unknown”. Owners reported only 

eight stillbirths. Factoring-in the breeding age females for which breeding status had not 

been reported (n=28), the surveyed population produced an estimated 1,736 puppies in the 

previous year.  Considering the 33.6% of puppies that are euthanized, this equated to a per 

capita breeding rate of 0.48 births per dog per year (n=2,426). 

 

Table 3.5. Odds ratios with 95% confidence intervals (CI) for explanatory variables 
predicting dog ownership, based on the best fit multivariate generalized binary logistic 
regression model, with settlement as a random variable.  
Explanatory 
variable

Variable 
type Levels

Odds 
ratio

CI:  
2.5%

CI: 
97.5% p value

Apartment* 1 - - -
Cottage 10.280 7.597 14.091 <0.01
No* 1 - - -
Yes 2.484 1.997 3.090 <0.01
No* 1 - - -
Yes 2.703 1.998 3.699 <0.01
1 person* 1 - - -
Per 
additional 
person

1.306 1.189 1.435 <0.01

No* 1 - - -
Yes 2.860 1.536 5.947 <0.01
Village* 1 - - -
Town 0.674 0.496 0.931 0.01
Large town 0.668 0.417 1.093 0.07

Residence type

Cat owner

Poultry owner

Categorical

Categorical

Categorical

People in house Numeric

CategoricalLivestock owner

CategoricalCommunity Type

* Indicates reference level for categorical variables. 

 

Survey respondents reported 308 dogs that died in the previous year. This equated to a per 

capita mortality rate of 0.13 deaths per dog per year (n=2,426), which combined with 

productivity from births, equated to an overall growth rate of 0.35 dogs per individual per 

year (ignoring the effects of migration). Owners reported that “sickness” was the most 

frequent cause of death (38.7%, n=308), with “distemper” (“чума”) explicitly mentioned 

in 51/119 cases. Other common causes of death included “road accidents” (14.0%), 

“senescence” (10.4%), and “anthropogenic” causes (9.7%, including “poisoning”).  Two 

households in Lazo reported that tigers had killed one of their dogs during visits to the 

forest within the last year (0.6%). In addition, one householder in the settlement of 

Chistovodnoye reported that a tigress had repeatedly entered her property on the edge of 
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Figure 3.3. An age pyramid illustrating the frequency distribution of dogs at yearly age 
intervals, generated using the R package ‘pyramid’ (Nakazawa 2014). 
 

the village, and killed seven of her dogs over approximately seven years (although none of 

these deaths occurred within the preceding 12 months, and so these are excluded from the 

mortality figures). 

 

Owners were able to provide information on the origin of 2,332 dogs. Of these, 28.8% had 

originated from other settlements, 19.3% from other districts, 1.5% from other provinces, 

and 0.2% from other countries (including China, the United States, Australia and Belarus). 

The distance between origin, and current location for dogs originating from other 

settlements was highly left skewed, with a median distance of 51.5 km, and a mean of 

222.8 km (SD=783.5, n=670). The best fit multivariate model indicated that a dog was less 

likely to have originated in another settlement if it was a guard dog, lived in a town or a 

large town, and resided in a cottage (Table 3.6, Appendix XIV). Although inclusion of 

study area improved the fit of the model, it was not significant as an explanatory variable. 

 

Owners reported that the majority (93.1 %, n=2,379) of dogs were never taken to other 

settlements, with 2.6% travelling rarely, 2.6 % at least annually, 1.3 % at least monthly, 
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and only 0.4 % on a weekly basis. Owners were also asked about the unsupervised 

movement of dogs within settlements beyond their property boundaries. Most dogs (65.4 

%, n=2,379) were reported never to roam without supervision, while 17.7 % reported to 

roam rarely or sometimes, 10.8 % to be allowed to roam for part of the day, and 6.1 % 

were allowed the freedom to roam at all times. Many of the owners who allowed their dogs 

to roam rarely, or sometimes noted that they only allowed them to roam during the winter, 

when their neighbours were not tending their produce gardens.  

 

Table 3.6. Odds ratios with 95% confidence intervals (CI) for explanatory variables 
predicting dog origin, based on the best fit multivariate generalized binary logistic 
regression model, with household as a random variable. 
Explanatory 
variable

Variable 
type Levels

Odds 
ratio

CI:  
2.5%

CI: 
97.5% p value

No* 1 - - -
Yes 0.513 0.381 0.682 <0.01
Village* 1 - - -
Town 0.416 0.254 0.668 <0.01
Large town 0.250 0.121 0.494 <0.01
Apartment* 1 - - -
Cottage 0.280 0.150 0.504 <0.01
Southwest* 1 - - -
Lazovskii 1.136 0.736 1.753 0.56
SABZ 1.219 0.688 2.167 0.50

Study Area

Residence Type

Community Type

Guard dog Categorical

Categorical

Categorical

Categorical

* Indicates reference level for categorical variables. 

 

The best fit multivariate model indicated that dogs were less likely to roam in the 

Lazovskii study area, or if they resided in towns or large towns, or had been sourced in 

another settlement (Table 3.7, Appendix XV). Roaming was more likely for companion 

dogs, from households with cat ownership, and in older dogs.  

 

Owners reported taking 41.0% of dogs to visit forested areas (n=2,324 dogs), where 

encounters with tigers or other wild carnivores could potentially occur. In addition to the 

reported incidents of predation by tigers, several owners reported direct contact between 

their dogs and mesocarnivores. The owner of one dog, with visible skin lesions consistent 

with sarcoptic mange and bite wounds, noted that the infection had been contracted during 

a fight with a raccoon dog. Another owner reported a similar incident, whereby their dog 

contracted mange from a raccoon dog and subsequently died following an infestation with 

fly larvae.  
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Table 3.7. Odds ratios with 95% confidence intervals (CI) for explanatory variables 
predicting dog roaming, based on the best fit multivariate generalized binary logistic 
regression model, with household as a random variable. 
Explanatory 
variable

Variable 
type Levels

Odds 
ratio

CI:  
2.5%

CI: 
97.5% p value

Village* 1 - - -
Town 0.6615 0.4649 0.9462 0.02
Large town 0.2448 0.1503 0.3835 <0.01
Southwest* 1 - - -
Lazovskii 0.4055 0.2951 0.5511 <0.01
SABZ 0.9845 0.6495 1.4838 0.94
No* 1 - - -
Yes 1.6868 1.4026 2.0289 <0.01
Local* 1 - - -
Non-local 0.729 0.5989 0.8851 <0.01
No* 1 - - -
Yes 1.3969 1.1129 1.7617 <0.01
1 month 1 - - -
Per 
additional 
month

1.0022 1.0003 1.0041 0.02

Study Area

Community Type

NumericAge 

Cat owner

Source

Companion dog Categorical

Categorical

Categorical

Categorical

Categorical

* Indicates reference level for categorical variables. 

 

Owners reported that 32.0% of dogs had been vaccinated against CDV within their 

lifetime, with only 11.4% of dogs immunized within the preceding 12 months (n =2,369). 

Similar vaccination rates were reported against rabies, with 34.0% having been inoculated 

at least once in their lifetime, and 16.8% within the last 12 months (n=2,367). Levels of 

vaccination study area were significantly different (chi-square = 57.467, p<0.01, df = 2), 

with 39.3%, (CI: 36.5-42.2%, n=1,169) of dogs vaccinated in Southwest Primorskii, 

23.9%, (CI: 20.9-27.2%, n=719) in Lazovskii, and 26.4%, (CI: 22.6-30.6%, n=481) in 

SABZ. The best fit multivariate model found that dogs were more likely to have been 

vaccinated during the previous year if they had been sourced in another settlement, but 

vaccination was less likely for guard dogs (Table 3.8, Appendix XVI). Owners who gave 

one or more reasons for not vaccinating against CDV in the last year attributed this to: 

“unaware of benefit” (58.3%, n=1,237),  “lack of local facilities” (17.9%), “lack of time” 

(6.8%),  “lack of awareness of locations offering vaccination” (5.7%), “cost” (2.3%), 

“inability to handle” (1.8%), “unaware of yearly need” (1.1%), or “other” reasons (14.8%). 
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Table 3.8. Odds ratios with 95% confidence intervals (CI) for explanatory variables 
predicting vaccination of dogs within the previous year, based on the best fit multivariate 
generalized binary logistic regression model, with household as a random variable. 
Explanatory 
variable

Variable 
type Levels

Odds 
ratio

CI:  
2.5%

CI: 
97.5% p value

Local* 1 - - -
Non-Local 3.56 1.27 10.9 0.02
No* 1 - - -
Yes 0.25 0.0684 0.793 0.02

Source

Guard dog

Categorical

Categorical

* Indicates reference level for categorical variables. 

 

Discussion 

Domestic dogs are a ubiquitous part of village life in rural Primorskii, with among the 

highest levels of dog ownership (i.e. the lowest human to dog ratios) anywhere in the 

world. The mean human to dog ratio of 1.95 recorded in villages was roughly equivalent to 

those recorded in rural areas in Latin America (including 1.5 to 1.87 in Argentina [Cardinal 

et al.2006; Gurtler et al.2007], 1.5 in Bolivia [Fiorello et al.2006], 1.1 to 2.1 in Chile 

[Acosta-Jamett et al.2010; Silva-Rodríguez et al.2010], and 1.7 to 2.6 in Mexico [Fishbein 

et al.1992; Ortega-Pacheco et al.2007]), and was marginally lower than elsewhere in Asia 

(e.g. 3.1 in Cambodia [Ly et al.2009]), and considerably lower than those recorded in 

Africa (e.g. 5.3 to 14 in Tanzania [Knobel et al.2008a]). These ratios lead to high densities 

of dogs within settlements, however, dogs are distributed in a highly aggregated manner 

across the landscape, and so their impact on wild species may be considerably lower than 

these figures suggest. For instance, the dog densities of 0.3 to 2.4 dogs/km2 estimated in 

the three study areas in Primorskii compare to 5.72 to 7.17 dogs/km2 estimated in Serengeti 

District of Tanzania, which were thought to be the source of 1994 outbreak of CDV among 

the Serengeti lions (Cleaveland et al. 2000). Furthermore, the Primorskii figures are liable 

to over-estimate dog densities in tiger habitat, due to the exclusion of dogs from protected 

areas. 

 

The strongest predictor of dog ownership was residence type, with more dogs owned by 

cottage households than apartments. Apartments become more common with the 

increasing size of settlements, representing 15.3% of households in villages (SD 26.7, 

n=22), 30.3% in towns (SD=29.9, n=3), 94.3% in the large town of Slavyanka, and 79.8% 

in the city of Ussuriysk. This may be due to restrictions in space, the comparative difficulty 

of outdoor access, limitations in areas suitable for exercising dogs, or the greater security 
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in buildings with a single common access (and therefore reduced need for guard dogs). 

Interestingly, the presence of other animals (cats, poultry and livestock) was a strong 

predictor of dog ownership. One possible explanation is that dogs are kept to prevent 

predation of livestock and poultry by other dogs or mesocarnivores, although it should be 

noted that the latter are rarely observed in settled areas due to high levels of persecution 

and the value of their pelts (Dronova and Shestakov 2005). Alternatively, people with an 

affinity for animals may be more likely to keep dogs, as well as consider the care of 

poultry and livestock a worthwhile endeavor. In Tanzania, Knobel et al. (2008) also found 

a strong association between dog and livestock ownership. In that study only 12.7% of 

those surveyed reported the primary reason dog ownership as protection of livestock, and 

23.5% as protection of crops, suggesting that dogs were primarily kept for reasons other 

than increasing agricultural productivity.  

 

Although growth rate estimates based on birth and death rates suggest a markedly growing 

population, it is likely that the actual growth rate falls somewhat lower than this. At the 

level of the household, dog ownership has increased over the last decade at a mean annual 

rate of 2.73%. This increase falls considerably below the calculated annual growth rate of 

34.9% based on reported rates of breeding and mortality. One possible explanation for this 

is the tendency for owners to under-report dog mortality during the first year of life. 

Owners reported that 41.5% of pups were either euthanized, or died due to accident or 

sickness. This would equate to 720 of the estimated 1,736 pups born in the previous year, 

yet householders reported just 101 mortalities of dogs less than 12 months old. The 

disparity is only slightly greater than the estimated 547 pups that would have been 

euthanized, and it is possible that owners are reluctant to report euthanized pups in their 

annual mortality figures. Another explanation for under-reporting of deaths during the first 

year of life may be that owners do not perceive pups and juveniles as equivalent to older 

dogs. There is an expectation of high mortality in this age class, and pups have had less 

time to bond with their owners, therefore their deaths do not have the same emotional 

impact as it would for older dogs.  

 

Despite the increase in dog ownership over the last ten years, the total numbers of dogs in 

the three study areas have remained relatively steady (increasing by only 0.9% during the 

decade). This was due to a declining human population in study settlements, as 

urbanization drives a depletion of rural areas in Primorskii Krai. Notably, the ten year trend 
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in dog ownership was affected by residence type. Owners currently residing in apartments 

reported keeping 26.7% fewer dogs than a decade earlier, compared to an increase of 

32.3% reported by owners in cottages. Although the survey questionnaire did not account 

for changes in residence type over the preceding decade, it is likely that urbanization 

would increase apartment occupancy. This would suggest that the changing picture of dog 

ownership is complex, with more dogs being kept by fewer households in rural areas, 

while net urban migration is likely to be driving an overall decline in dogs being kept 

within the province as a whole.  

 

The prominence of sickness among reported causes of mortality was notable (38.7%, 

n=308), particularly given the frequency with which “distemper” was explicitly mentioned 

(51/119 cases of sickness). This certainly suggests that infectious disease may be common 

in dog communities in Primorskii, but attempts to relate this to the true incidence of 

distemper may be misleading. Due to the limited access to veterinary care, and particularly 

to confirmatory diagnostics, few (if any) of the reported distemper cases were likely to 

refer to anything more than a presumptive diagnosis. It is possible that owners may have 

been predisposed to mention “distemper” specifically if interviewers had used the word 

themselves when introducing the project when requesting survey compliance. Furthermore, 

in common with the etymology of the word ‘distemper’ in English, the Russian word for 

‘distemper’ (“чума” - čúma) equates to the word for ‘plague’, and may be used by 

laypersons as a catchall for different causes of sickness in dogs. The use of the English 

words ‘cold’ or ‘flu’ used in reference to respiratory disease in humans is a similar 

example.  

 

Although more than a quarter of dogs originated outside their current settlement, only a 

small proportion (6.9%) travelled to other settlements in later life. Assuming that most 

rural settlements fall below the CCS, this movement of young dogs represents the most 

likely means of introducing CDV from other dog populations. Infection with CDV is most 

common in young dogs, after maternal antibody titers wane at three months of age, and up 

to 75% of infections can be subclinical (Greene and Appel 2006). Once introduced, the 

spread of CDV through a community is facilitated by the ability of infected dogs to interact 

with susceptible animals. In Primorskii, relatively few dogs were free to roam within 

settlements, with 65.4% never allowed to leave the owner’s property unsupervised, and 

only 16.9% roaming on a daily basis. Movement was particularly restricted for dogs living 
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in apartments, with 78.7% (n=169) never leaving the apartment unsupervised. By 

comparison, in Chile, Acosta-Jamett et al. (2010) found that 27% of dogs in cities, and 

67% of dogs in rural areas had freedom to roam, with as many as 92.2% roaming in 

another rural area of the same country (Sepúlveda et al. 2014). Similarly 90% of dogs 

surveyed in Kenya were allowed to move unsupervised for substantial periods of time 

(Kitala et al. 2001). The level of movement restriction in the present study was roughly 

equivalent to the 68.3% of dogs restricted in an urban area of Taiwan (Weng et al. 2006). 

These restrictions in dog movement would hinder the capacity for CDV to spread within 

communities, an effect that would be particularly evident among dogs living in large towns 

and cities, where apartments predominate.  

 

Vaccination has been very effective in controlling CDV, to the point of near elimination 

among domestic dogs in some parts of the world (Bohm et al. 2004, Norris et al. 2006). 

Despite its importance, as few as 30-50% of dogs are estimated to be vaccinated against 

CDV and other canine infections in developed countries, with far fewer in developing 

nations (Day et al. 2010). By comparison, the 32.0% of dogs in Primorskii that had 

received a CDV vaccine at least once in their lives, and 11.4% within the previous year, 

while low, is not far below the range that could be expected within a country with good 

levels of veterinary care. More encouraging was the observation that five communities in 

Southwest Primorskii reported recent rabies vaccination coverage in excess of 60%, with 

one community reaching an impressive coverage of 89.6% of dogs (Nikolo-Lvovskoe in 

2013). These levels were reached due to an intensive rabies vaccination campaign that took 

place in parts of Southwest Primorskii immediately prior to our survey, following a recent 

human rabies exposure, and highlighted the potential of well organized, government 

sponsored vaccination programmes. Increased vaccination in dogs sourced from other 

settlements indicated by the best fit multivariate model, may have reflected a higher value 

of these animals, with people more willing to travel to obtain a desirable breed. 

Conversely, the lower rates of vaccination of guard dogs in the model may reflect lower 

value, greater difficulty in handling, or a perception that disease is less likely in dogs that 

are often chained up.  

 

Few studies have attempted to estimate the CCS that would be required to ensure the 

persistence of CDV. Empirical studies estimating the CCS of human measles, consistently 

produced figures in the region of 250,000 to 400,000 (Bartlett 1957, Black 1966), however, 
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rates of human reproduction and contact are quite different from those of domestic dogs, 

and so these figures will not apply to CDV. A single-species model based on the coyote 

population in the Greater Yellowstone Ecosystem estimated a minimum CCS of at least 

50,000 to 100,000 animals to achieve a moderate persistence scenario for CDV of >50% 

within ten years (Almberg et al. 2010). These figures are an order lower that the province-

wide estimate of 467,224 dogs made for the whole of Primorskii. However, within this 

metapopulation, the single largest community (Vladivostok) had an estimated dog 

population of approximately 100,000 dogs, for which contact is likely to be far more 

restricted than a free-ranging population of coyotes. For the purposes of comparison, there 

may be value in estimating the population of free-ranging wild carnivores over an 

equivalent area to the dog population estimates made here. Using conservative density 

estimates of the region’s most common wild carnivore species, extrapolated across the 

155,000 km2 of habitat occupied by tigers (Hebblewhite et al. 2014), mesocarnivores may 

number between 196,850 and 585,900 animals (Table 3.9). While the margins of these 

estimates are quite wide, it is notable that they bracket the projections made for domestic 

dogs, emphasizing that the role of wild carnivores in CDV maintenance should not be 

ignored.  

 

Despite the uncertainty surrounding the CCS needed to support CDV in domestic dog 

populations, certain features of ownership and demography make maintenance more or less 

likely.  Among features favouring CDV maintenance are the high densities of dogs, 

particularly in larger settlements, the high rate of reproduction, and the relatively low level 

of vaccination coverage. The tendency to move dogs during the early stages of life would 

also promote spread to communities that fall below the CCS. These effects would be 

countered by the lack of movement of mature dogs between settlements, and the 

comparatively low rates of unrestricted movement, particularly in large populations where 

dogs are found at high densities.  

 

The maintenance of CDV in domestic dogs only becomes relevant to the health of tigers in 

circumstances where contact is sufficient to enable dogs to transmit infection to the tigers 

directly, or to other susceptible wildlife that may act as a source of infection. With 41.0%of 

dogs from rural and urban areas being taken to the forest, and 5.8% of dogs being used for 

hunting, there are clearly many opportunities for wildlife interaction. Anecdotal reports of 

tigers predating dogs illustrate the opportunity for direct transmission. Furthermore, two 
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owners reported that their dogs contracted mange (assumed to be Sarcoptes scabei 

infection) during agonistic interactions with raccoon dogs, suggesting a degree of contact 

 

Table 3.9. Published density estimates (animals/km2) for the four most abundant 
mesocarnivore species in Primorskii Krai. Low and high density estimates are based on 
non-urban settings within published sources, giving preference to Russian sources where 
available. Density estimates are not available for Asian badgers, so the range quoted refers 
to the closely related Eurasian badger (Meles meles), to which the taxon was formerly 
considered conspecific. Density estimates are extrapolated across the 155,000 km2 
distribution of the Amur tiger to produce low and high population estimates.

Species name
Low 
density 
estimate

High 
density 
estimate 

Low 
population 
estimate

High 
population 
estimate

References

Sable 
Martes zibellina
Asian badger 
Meles leucurus
Red fox 
Vulpes vulpes
Raccoon dog 
Nyctereutes 
procyonoides
Total 196,850 585,900

0.34 0.48 52,700 74,400
(Ward and 
Wurster-Hill, 
1990)

0.49 1.13 75,950 175,150 (Heydon et al., 
2000)

0.4 1.5 62,000 232,500 (Larivière and 
Jennings, 2009)

0.04 0.67 6,200 103,850 (Stroganov, 
1969)

troganov 1969, Ward and Wurster-Hill 1990, Heydon et al. 2000, Larivière and Jennings9)  
 

that would likely enable transmission of CDV. The frequency of these interactions is 

difficult to assess, and in the case of hunting dogs it is worth noting that hunting season in 

Primorskii runs from 1 November through 15 January, a period coinciding with the 

hibernation of badgers and raccoon dogs, which may reduce opportunities for direct 

contact. Conversely, cold temperatures at this time may extend the viability of CDV 

(Greene and Appel 2006, Ballmann Acton 2007), raising a possible role for indirect 

transmission in the epidemiology of the virus. 

 

Attempts to control CDV in the dog population in Primorskii should focus on raising the 

herd immunity by increasing vaccination coverage. In the face of limited resources, 

vaccination programmes should adopt strategies that maximize the number of unvaccinated 

dogs that are inoculated using the funds available (Knobel et al. 2008). In Primorskii, the 

strongest predictor of dog ownership is residence type, with 80.1% of cottage households 

owning at least one dog, compared to just 16.9% of apartment households. Cottages are 

also likely to house a greater number of dogs than apartments. Therefore, in large towns 
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and cities, vaccination programmes should concentrate on districts where cottages 

predominate, as strategies targeting apartments provide a low return for investment. 

However, this targeting strategy would be difficult to apply to most villages, as cottages 

represent the predominant, or only house type in most settlements of this size.  

 

While only 11.4% of dogs had received vaccinations within the previous year, a further 

20.6% of dogs had been vaccinated at earlier time points. The level of protection afforded 

by these earlier vaccinations could have an important bearing on the overall level of herd 

immunity. A study that measured antibody titers in 144 dogs in England, which had been 

vaccinated at least three years previously found that 71.5% still had protective titers, with a 

further 18.1% found to have borderline titers where protection was possible, but could not 

be assured (Bohm et al. 2004). Other researchers have found that CDV antibody titers 

declined significantly after two years (Jóźwik et al. 2004), and in India dogs vaccinated 

more than a year earlier were as likely to contract CDV as unvaccinated dogs (Latha et al. 

2007). This disparity could relate to the effectiveness of vaccine products, or variation in 

protocols used. It would therefore be valuable to measure the relationship between 

antibody titers and time since vaccination in dogs in Primorskii, to determine whether 

protection is adequate in this population.  

 

At a population level, vaccination reduces the number of dogs that are susceptible to 

contracting CDV infections. When an infected individual enters a population where the 

number of susceptible dogs exceeds 1/R0, the incidence of infection is liable to increase, a 

situation that favours the onset of an outbreak. Consequently, vaccination programmes aim 

to attain a coverage of 1-1/R0, in order to keep the proportion of susceptible animals below 

this threshold. Assuming that vaccination against CDV protects dogs indefinitely, the level 

of vaccination reported in study settlements would be sufficient to control outbreaks if the 

R0 of CDV were 1.47 or lower in dog populations in Primorskii. The value of R0 is not 

absolute, and will vary with population structure and other factors. Few studies have 

attempted to estimate R0 for CDV in field situations. A model based on surveillance data 

from Italian foxes was used to estimate R0 to be 1.26 in that population (Nouvellet et al. 

2013), however, this may have little relevance to domestic dogs living in higher densities 

in human settlements. In Tanzania, the success of dog vaccination in controlling rabies, but 

not CDV was attributed to the higher R0 of the latter (Viana et al. 2015). Estimates of R0 

for rabies among domestic dogs in Tanzania is approximately 1.2, and has been 
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consistently found to be <2 among dogs in other parts of the world (Hampson et al. 2009), 

suggesting that the R0 for CDV may exceed  the 1.2 to 2.0 range. If this applied to rural 

Primorskii, then the R0 of CDV may exceed the 1.47 threshold of protection afforded by 

the vaccination that has been reported alone. Further work to assess the levels of protective 

antibodies (both from vaccination and natural infection), as well as research to estimate Ro 

in the population would be required to assess whether measures to increase vaccination 

coverage would be desirable.  

 

Additional measures might complement vaccination programmes to control CDV in the 

dogs of Primorskii. The majority (58.3%) of people who had not vaccinated their dogs 

within the previous year reported that they were unaware of the purpose for doing so. This 

might indicate a place for outreach programmes, to inform owners of the value of 

vaccination. Given the potential importance of young dogs in the movement of CDV, 

advice on the vaccination of puppies after 12 weeks might reduce the spread of CDV 

between settlements.  

 

Conclusion 

The levels of dog ownership in the far eastern province of Primorskii are among the 

highest anywhere in the world, with among the lowest recorded human to dog ratios. 

However dog populations are highly aggregated, and densities are extremely low in rural 

landscapes where tigers live. Although the number of dogs kept per person has increased 

during the previous decade in rural areas, this has been offset by a trend toward 

urbanization. Thus the overall number of dogs in the province has changed little during the 

period since 2000 when CDV exposure in tigers appears to have increased. Several factors, 

including high local densities, high reproductive rate, and relatively low vaccination 

coverage could favour the maintenance of CDV. However, the limited movement of dogs 

between settlements, and restrictions on dog movement within settlements will reduce the 

capacity of CDV to infect news hosts, and reduce R0. The influence of these factors on the 

capacity for CDV to be maintained in the dog population may be advanced through the 

development of epidemiological models, and serological studies to determine the spatial 

and temporal patterns of CDV exposure. In the event that the domestic dog population is 

capable of maintaining CDV, opportunities do exist for transmission to tigers and other 

susceptible carnivores. However, it should be noted that the estimated dog population in 
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the province of almost half a million animals may be numerically similar to that of 

susceptible mesocarnivores. Given these numbers it would be prudent to consider the 

possible contribution of mesocarnivores to CDV maintenance before attempting to control 

tiger infections through vaccination of domestic dogs alone.  
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Chapter 4 Molecular characterization of canine 
distemper virus in Amur tigers and the wider 
carnivore community in Primorskii Krai 

 

Abstract 

Canine distemper virus (CDV) negatively impacts the population viability of Amur tigers 

Panthera tigris altaica in the Russian Far East but little is known about transmission links 

between tigers, other wild carnivores and domestic dogs. This study used conventional and 

Illumina sequencing to generate complete and partial sequence data from haemagglutinin 

and fusion gene sequences of viruses from tigers (n=3, 2003-2013), six other wild 

carnivore species (n=23 2011 to 2015) and a domestic dog (n = 1, 2016) in the Russian 

territory of territory of Primorskii Krai.  Phylogenetic trees were constructed using 

maximum likelihood methods.  All wild carnivore viruses, including tigers, clustered 

within the Arctic-like clade of CDV, which is widely distributed in northern latitudes but 

rare among domestic animals in neighbouring countries. By contrast, the two domestic dog 

viruses clustered within the Asia-4 clade, and shared highest identity to a virus from 

Thailand.  CDV sequences from tigers and other large wild carnivores shared recent 

common ancestors with those obtained from mesocarnivores, and viruses from disparate 

locations were well mixed across sublineages.  These results suggest that CDV sublineages 

circulate among a wide range of wild carnivore hosts across relatively large geographic 

scales.  Although samples sizes were very limited, this study also indicates that CDV 

sublineages circulating in wildlife are distinct from the viruses isolated from domestic dogs 

in the same region. These results indicate that wild carnivores represent the most likely 

source of CDV for tigers and that control measures directed only at domestic dogs are 

unlikely to be effective in mitigating the impact of infection on Amur tiger populations in 

the Russian Far East. 
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Introduction 

Based on the findings from Chapter 3, it is evident that some aspects of the domestic dog 

population in Primorskii Krai may favour the maintenance of CDV (particularly the large 

dog population, rapid reproduction, and relatively low vaccine coverage), while others may 

inhibit it (including restricted movement within and between settlements). It was also 

noted that numbers of dogs and wild mesocarnivores might be roughly comparable, 

suggesting that either population could be important contributors to the CDV reservoir in 

the region. Anecdotal reports of direct contact between dogs and tigers, as well as between 

dogs and mesocarnivores suggest potential routes for CDV transmission between these 

populations. With 41.0% of dogs given access to the forest, this contact could be occurring 

on a regular basis. Although owners reported that sickness was the most common cause of 

dog mortality, with specific mention of distemper in many cases, this can only be taken as 

anecdotal support for the presence of CDV in the dog population. Therefore the primary 

objective of Chapter 4 is to diagnose cases of CDV in the dog, mesocarnivore and large 

carnivore populations, and to assess the genetic relatedness of viruses in each, as an 

indication of potential transmission pathways. 

 

Canine distemper virus (CDV) is an enveloped negative single-stranded RNA virus within 

the family Paramyxoviridae and genus Morbillivirus. The pathogen is capable of infecting 

a diverse range of host species, particularly within the order Carnivora (Deem et al. 2000). 

Consequently, CDV has a near global distribution, and has been detected in both terrestrial 

and marine ecosystems, with infections in both domestic and wild animal hosts (Harder 

and Osterhaus 1997, Craft et al. 2008). This capacity to transmit between species presents 

a particular threat to endangered populations, as more abundant reservoir host species can 

act as a continued source of infection (Woodroffe 1999, Viana et al. 2014). The recent 

detection of CDV in Amur tigers Panthera tigris altaica in the Russian Far East is an 

example of this (Quigley et al. 2010, Seimon et al. 2013), with the virus increasing the 

extinction potential of individual tiger populations (Gilbert et al. 2014). With population 

estimates of between 331 and 393 adult and subadults (Miquelle et al. 2007), and low 

intra-species connectivity (Goodrich et al. 2010) it is unlikely that tigers can maintain CDV 

without transmission from other species. As CDV infections generally have short-lasting 

incubation and infectious periods (Greene and Appel 2006), intra-species transmission 

chains between tigers are likely to be short, and restricted to infrequent contacts between 

territorial males and females, or mothers and cubs (Gilbert et al. 2015).Therefore tiger 
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infections are more likely to follow transmission through ‘spill over’ from more abundant 

susceptible hosts, such as domestic dogs or wild mesocarnivores, with which they are 

sympatric.  

 

Due to the low copy fidelity of many pathogen genomes (particularly those of RNA 

viruses), mutations are accumulated on a similar timescale to transmission, which can 

provide insights on the dynamics of infection in host populations. At a fundamental level, 

viruses that spread inefficiently in a target population following ‘spill over’ from a 

reservoir, will share a recent common ancestor with viruses in the source population 

(Viana et al. 2014). By obtaining sequence data from pathogens across an epidemiological 

system, it may also be possible to retrace more complex transmission routes using 

techniques adapted from genealogy studies (Bedford et al. 2010, Mather et al. 2013), or the 

construction of parsimony networks (Templeton et al. 1992, Lembo et al. 2007).  A major 

limitation in these approaches is the availability of representative sequences from across 

the reservoir system. Where no samples are available from source populations, infections 

in the target may be incorrectly attributed to transmission from other populations where 

sequences have been obtained (Beerli 2004, Viana et al. 2014).  Nevertheless, as long as 

available sample sets are evaluated critically, they may provide a useful means of 

estimating possible routes of transmission. The genome of CDV accumulates substitutions 

at a relatively high rate (4 x 10-4, nucleotide substitutions per site per year, Panzera et 

al.2015). Sequence data collected at different time points can be used to estimate the rate 

of nucleotide substitution using molecular clock models of evolution, which enables the 

time to most recent common ancestor (TMRCA) for a set of sequences to be estimated 

(Drummond et al. 2003). Given that intra-species transmission chains among tigers are 

likely to be short, it would follow that tiger viruses should share a recent common ancestor 

to those found in maintenance hosts, or sources of infection (Viana et al. 2014).  

 

The phylogeny of sequences across a host population may also be used to infer its potential 

for maintaining the pathogen. By definition, maintenance comprises the long term 

persistence of a pathogen, and is therefore likely to be characterized by long transmission 

chains within the host population (Haydon et al. 2002, Viana et al. 2014). These long 

chains of transmission give rise to multiple lineages that are genetically distinguishable, 

and over time disseminate spatially through infection of neighbours, and movement of 

infected animals across the landscape giving rise to a diverse and geographically well-
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mixed pathogen gene pool across the maintenance population (Viana et al. 2014). Similar 

genetic patterns can arise where spill over occurs regularly, giving rise to a spatially well-

mixed pattern of pseudo-endemicity (Viana et al. 2014). As a result of this, spatial-mixing 

of genetic lineages is not a definitive identifier of a maintenance population; nonetheless it 

can be useful as supporting evidence within the wider framework of an epidemiological 

investigation.  

 

Viral sequence data can also be used to identify adaptive changes that may influence the 

biology of the virus. With no evidence that Amur tigers have been exposed to CDV prior 

to 2000, it has been proposed that the virus may be newly emerging in the tiger population 

(Goodrich et al. 2012, Seimon et al. 2013). This could arise through an increase in viral 

exposure (e.g. through an expanding viral distribution, or increasing incidence within the 

reservoir population), or through an adaptive change in the virus itself, which increases the 

potential for tiger infection. The sequencing of viruses from tigers, and other carnivores in 

the Russian Far East may therefore produce important information about adaptive 

mutations that may affect species susceptibility.  

 

The CDV genome is 15,690 base pairs (bp) long, and includes genes that encode for six 

structural proteins: the nucleocapsid (N), phospho- (P), matrix (M), fusion (F), 

haemagglutinin (HA) and large- (L) proteins. In addition, the P-gene encodes for two non-

structural proteins, V and C, which modify host immune response (Nakatsu et al. 2008). 

The HA-gene shows the greatest variation within the CDV genome, and has been used to 

classify the virus into distinct clades that roughly approximate to <96% similarity at the 

amino acid level (Bolt et al. 1997, Martella et al. 2006). Currently 15 clades have been 

proposed (excluding vaccines), which are largely restricted to geographic regions (Haas et 

al. 1997, Bolt et al. 1997, Iwatsuki et al. 1997, Zhao et al. 2010, Radtanakatikanon et al. 

2013, Espinal et al. 2014, Sarute et al. 2014, Riley and Wilkes 2015). Analysis of the F-

gene has supported this phylogeographic clustering, although available data are more 

limited (Lee et al. 2013, Sarute et al. 2013, Romanutti et al. 2016).  

 

Most research has focused on the envelope glycoproteins HA (responsible for cell binding 

and host specificity), and F (responsible for entry into host cells, and the formation of 

syncytia, through the fusion of neighbouring cells). The HA-protein can bind to two host 



Chapter 4. Molecular characterization  112 
 
receptors: the signalling lymphocyte activation molecule family 1 (SLAM/F1, also known 

as CD150) on T and B lymphocytes, and the nectin-4 receptor (also known as 

polioviruslike receptor 4, PVLR-4) on epithelial cells (Tatsuo et al. 2001, Noyce et al. 

2012). Once bound, conformational changes to the HA-protein stimulate the F-protein to 

mediate cellular entry. Viral affinity for SLAM/F1 receptors is necessary for entry into 

new hosts, and is at least partially responsible for the lymphodepletion and 

immunosuppression that characterizes CDV infections (von Messling et al. 2006). 

Epithelial infection, mediated via nectin-4 entry, plays a key role in pathogenesis, causing 

respiratory, gastrointestinal and systemic signs, and may also be linked to neurological 

disease that can follow in later stages of infection (Sawatsky et al. 2012), although other as 

yet unidentified receptors may also play a role (Sato et al. 2012). Host susceptibility is 

primarily determined by the affinity of the HA and SLAM/F1 proteins, influenced by 

variation in the structural and physical properties of both molecules (McCarthy et al. 2007, 

Ohishi et al. 2014).  

 

Non-synonymous mutations at two positions of the HA-gene have been postulated as 

influencing the host specificity of CDV (McCarthy et al. 2007, Nikolin et al. 2012b). An 

analysis of 73 CDV HA-gene sequences by McCarthy et al. (2007) identified amino acid 

substitutions at position 530 (from glycine [G] or glutamic acid [E], to either arginine [R], 

aspartic acid [D], or asparagine [N]), and position 549 (from tyrosine [Y] to histidine [H]) 

that appeared to favour infection in non-canid hosts (McCarthy et al. 2007). However, a 

more recent analysis of a larger dataset (comprising 139 sequences) found no support for 

the involvement of position 530 in host adaptation, with amino acid identity at this position 

largely conserved within geographic regions irrespective of species (Nikolin et al. 2012b). 

The analysis also found a more complex correlation at position 549, with domestic dogs 

showing a strong bias toward Y residues (Y/H ratio of 71/1), a weak bias toward Y 

residues in wild canids (23/11), and a weak bias toward H in non-canids (13/20). Within a 

single host species, the Y549H substitution can be acquired through just three passages of 

an attenuated CDV 549Y strain through a ferret infection model, and was shown to be 

associated with an increase in virulence (von Messling et al.2003). The rapid acquisition of 

this substitution suggests that at least in ferrets, the Y549H substitution may be highly 

adaptive. In vitro experiments have determined that dog-like (549Y) strains were more 

efficient at infecting cell lines carrying dog SLAM/F1 receptors, than those bearing lion or 

cat SLAM/F1 receptors. Conversely, non-dog-like (549H) strains were more generalist, 

infecting all three cell lines at a moderate efficiency (Nikolin et al. 2012a). This finding 
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implies that generalist non-dog-like (549H) strains might be adaptive in a multi-host 

ecosystem, whereas specialist dog-like (549Y) strains might have a selective advantage 

wherever domestic dogs are numerically dominant.  

 

The sequence identity of additional regions of the HA and F genes are known to influence 

viral function (e.g. receptor binding regions and cleavage sites), and pathogenicity (N-

Glycosylation, Table 4.1, Figure 4.1). In comparison, relatively little is known about the 

adaptive importance of internal replication proteins, but experimental studies have 

indicated that they may have a role to play in host adaptation. Infection of ferrets with a 

recombinant virus bearing the envelope proteins from an attenuated parent (of dog origin), 

with the internal proteins (N, P and L) from a virulent virus caused clinical signs of 

intermediate severity to those of the parent viruses (von Messling et al.2003). Each of the 

internal proteins in the recombinant virus bore two substitutions that were absent in the 

attenuated parent, suggesting that some, or all may play a role in virulence, however any 

effect on host specificity is unknown. Likewise, a single substitution of a cysteine residue 

for a tyrosine at position 267 of the non-structural V-protein has been associated with the 

adaptation of dog origin CDV to infect human cell lines (Otsuki et al. 2013). Whether 

these in vitro findings have implications for inter-species transmission of CDV in the wild 

is currently unknown, however, substitution within replicating proteins are known to affect 

host range in other pathogens, such as highly pathogenic avian influenza virus (Czudai-

Matwich et al. 2014).  

 

The objective of this study was to obtain CDV sequence data from tigers, other wild 

carnivores and domestic dogs in Primorskii Krai that could contribute to an understanding 

of the epidemiology of the virus in the territory. In particular, molecular data were 

interpreted to assess the relative importance of domestic and wild carnivores as likely 

sources of infection for the target population of Amur tigers, as this information is essential 

for prioritizing control strategies. Sanger sequencing was used to obtain sequences of the 

external HA and F genes, and Illumina sequencing was employed to obtain wider genome 

coverage from viruses obtained from tigers. In particular Illumina sequencing was used to 

attempt to obtain more extensive sequences from the previously confirmed cases identified 
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Figure 4.1. Map of key amino acid residues influencing the structure and function of the 
envelope glycoproteins fusion (F) and haemagglutinin (HA) of canine distemper virus. The 
scale indicates amino acid residue position. Primary cleavage of the F protein between 
residues 135 and 136 results in the fusion signal peptide (Fsp) and F0 protein. Secondary 
cleavage of F0 between residues 224 and 225 produces proteins F2 and F1. Positions of 
motifs for attachment of N-glycan side chains are shown in blue triangles. The green square 
indicates the K-L-N-E-I motif at positions 110-114 that is critical to interaction between the 
HA and F proteins. The red circle indicates key residues (525Y, 526D, and 529R) in the 
receptor-binding site. 
 

by Seimon et al. (2013, particularly PT61/Pt 2004, Pt 2010-2 and PT56/Pt 2010-31) as well 

as a suspected case PT90/Pt-2010-1, from which no sequence could be amplified using 

conventional approaches. Sequence data were used to describe the post-translational 

identity of viral glycoproteins, focusing on amino acid motifs that influence protein 

function and structure (including receptor binding sites, and the presence of N-glycan 

motifs). The phylogenetic relatedness of viruses was interpreted both within the global 

context, using a worldwide dataset of CDV sequences, and locally within Primorskii Krai. 

At a local level, the relatedness of viruses from different host species, locations and time 

points was used to inform the epidemiology of CDV in the region. Results were used to 

prioritize potential control strategies that could reduce the impact of CDV on the viability 

of tiger populations in the Russian Far East. 

 

In particular, this chapter will test the following statements and hypotheses: 

1. Species that contribute to the maintenance of CDV will be commonly infected with 

the virus. The study will test the null hypothesis that CDV infections will not be  

                                                
1 Throughout this chapter the tigers whose tissues were submitted for Illumina sequencing will be 

identified using the conventional PT identifier codes used elsewhere in this thesis (e.g. PT61), 
together with the identifiers used by Seimon et al. (2013, e.g. Pt 2004) to ensure clarity. 
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Table 4.1. Functionally important amino acid residues and motifs in the canine distemper 
virus (CDV) haemagglutinin (HA) protein, and fusion (F) protein. 

Amino acid identity Importance Source

K-L-N-E-I motif at position  
110-114

Conserved in all CDV viruses, and 
critical to HA and F protein 
interaction.

Lee et al. 2008

525Y, 526D, 529R Critical to efficient binding to host 
signalling lymphocyte activation 
molecule (SLAM) receptors.

Zipperle et al. 
2010

G/E530R/D/N Proposed as adapative for host 
receptor binding in non-domestic 
carnivores, but questioned during 
recent analyses.

McCarthy et al. 
2007, Nikolin 
et al. 2012

Y549H Proposed as adapative for host 
receptor binding in non-canids (may 
be adaptive in non-domestic canids).

McCarthy et al. 
2007, Nikolin 
et al. 2012

N-X-T/S motif (X = any 
residue except proline) found 
at N21, N149, N309,N391, 
N422, N456, N587 and N603 
in wild viruses

Potential N-glycosylation site for 
attachment of oligosaccharide side 
chains. Affect protein folding. 
Reduced glycocylation reduces 
pathogenicity.

Sawatsky and 
von Messling 
2010

A|QIHW motif at position 135-
136

Essential for peptidase cleavage 
between Fsp and F0 proteins. Fsp 
down-regulates fusion activity, 
stabilizing the virus and influences 
neuropathogenesis

von Messling 
and Cattaneo, 
2002

RXK/RR motif at position 224-
225

Essential for peptidase cleavage of 
F0 to profuce F2 and F1proteins.

von Messling 
and Cattaneo, 
2002

N-X-T/S motif (X = any 
residue except proline) found 
at N62, N141, N173, N179, 
and N517

Potential N-glycosylation site for 
attachment of oligosaccharide side 
chains. Affect protein folding. 

Lee et al. 2013

HA-Protein

F-Protein

(von Messling and Cattaneo 2002, Lee et al. 2008, 2013, Sawatsky and von Messling  

identified in dogs and/or wild mesocarnivores, as they are not contributing to the 

maintenance of CDV in Primorskii Krai.  

2. Even if viruses are found among dogs and/or mesocarnivores, these populations 

may not be acting as sources of infections for tigers, if their viruses are not closely 

related to those found in tigers. The study will test the null hypothesis that tiger 

viruses are not closely related to those obtained from dogs and/or mesocarnivores, 

as they are not acting as sources of infection for tigers. 
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3. Long chains of CDV transmission will be an important indicator of a maintenance 

population, and give rise to a multiple genetic lineages with a geographically well-

mixed phylogeny. The study will test the null hypothesis that viral sequences from 

disparate locations will not group together on phylogenetic branches that share a 

recent common ancestor.  

4.  Substitutions at position 549 of the HA glycoprotein may play a role in host 

adaptation. The study will test the null hypothesis that no wildlife viruses will carry 

the Y549H substitution that has been proposed as favouring infection in non-dog 

hosts. 

 

Methods 

Sample collection from domestic dogs 

Domestic dog samples were obtained from two sources: 1) clinically healthy dogs sampled 

during household surveys (Chapter 3), and 2) dogs presented for treatment at veterinary 

clinics. Household samples were collected from all dogs whose owners consented to 

sample collection during household surveys in the study areas of Southwest Primorskii, 

Lazovskii and Sikhote-Alin Biosphere Zapovednik (SABZ, described in more detail in 

Chapters 2 and 3). Nasal swabs were preserved in 300 µl of RNAlater stabilizing reagent 

(Qiagen Inc., Valencia CA), and whole blood was collected from the cephalic vein into 

vacutainers containing EDTA as an anticoagulant. All samples were then frozen (at -20 

Celsius or lower) until analysis.  

 

State and private veterinarians in rural and urban areas agreed to participate in the 

collection of clinical samples from sick dogs using a broad case definition, to maximize the 

chances of detecting CDV infections. Veterinarians were requested to collect conjunctival 

and nasal swabs in RNAlater from all dogs displaying any combination of upper 

respiratory disease, oculonasal discharge, gastrointestinal disease, and/or neurological 

signs. Participating veterinarians were based in the city of Vladivostok and the districts of 

Lazovskii, Ussuriyskii, Nadezhdinskii, Khankayskii, Khantaiskii, Dalengorskii, 

Partizanskii, and Arsenevskii.  
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Sample collection from wild mesocarnivores 

Tissue samples were obtained from small-bodied wild carnivores (mesocarnivores) with 

the assistance of state hunting inspectors in the towns of Ternei (Terneiskii district), Lazo 

(Lazovskii district) and Bikin (Pozharskii district). These inspectors made contact with 

local fur trappers authorized to capture fur-bearing species during the winter hunting 

seasons of 2011/2012, 2012/2013, and 2013/2014. Trappers provided skinned carcasses, or 

heads, which were frozen at -20 Celsius until sample collection. Samples were collected 

from specimens obtained during the 2011/2012 and 2012/2013 hunting seasons in the 

following manner. Frozen skulls were bisected, to facilitate the collection of approximately 

30 µg of tissue from the region of the hippocampus, which was then frozen at -20 Celsius 

in 1 ml of RNAlater.  Where present, 50 µg of lung tissue was pooled with brain tissue 

from corresponding animals. Utensils and surfaces were disinfected with a 20% solution of 

household bleach (3% sodium hypochlorite) between each specimen. Techniques were 

modified for specimens obtained during the 2013/2014 hunting season to reduce the 

potential for cross contamination, with approximately 30 µg of frozen brain tissue obtained 

by curette via the foramen magnum.  

 

Additional mesocarnivore samples were obtained from dead animals encountered 

opportunistically, including road traffic accidents, or animals found dead in the forest. 

Nasal swabs were also collected from anesthetized mesocarnivores captured during 

serosurveillance (Chapter 5). Archived blood products from mesocarnivores (including 

whole blood, blood clots and other cellular blood samples) were also selected from animals 

with CDV neutralizing antibodies at a titre of at least 1:16 (Chapter 5).  

 

Sample collection from large-bodied wild carnivores 

Tissue samples were collected opportunistically from large-bodied wild carnivores during 

necropsy examinations, and preserved in the same manner as described for dead 

mesocarnivores. In addition, frozen tissue samples and blood products were obtained from 

the archives of the Wildlife Conservation Society, Bronx NY. Blood products were also 

selected for RNA extraction from animals with measurable titres of serum antibodies of at 

least 1:16 (Chapter 5). 

 



Chapter 4. Molecular characterization  118 
 
Formalin-fixed paraffin embedded (FFPE) blocks of tissue that had previously been 

analaysed by Seimon et al. (2013) were selected for further extraction, with the objective 

of extending published sequences. Following the animal codes used by Seimon et al. 

(2013), these included the confirmed CDV cases PT61/Pt 2004, Pt 2010-2 and PT56/Pt 

2010-3 (which previously yielded the CDV sequences: KC579363 [PT61/Pt 2004; partial 

H gene], KC579361 [PT61/Pt2004; partial P gene], and KC579362 [PT56/Pt2010-3; 

partial H gene]), and from suspected case PT90/Pt 2010-1.  

 

Archived tiger scat samples collected in SABZ during 2009 and 2010 (an area and period 

when CDV had been detected in at least one Amur tiger, Appendix I, Gilbert et al. 2015) 

were prioritized for extraction. Samples had been individually bagged, and had been frozen 

at -20 Celsius for a period of up to three years. Approximately 50 µg was suspended in 1 

ml of RNAlater, and frozen at -20 Celsius prior to RNA extraction.  

 

Sanger sequencing 

In preparation for RNA extraction, samples were centrifuged at 14,000 r.p.m. for five 

minutes, to facilitate the removal of RNAlater. Tissue samples were macerated using a 

disposable pestle in 200 µl of Buffer RLT Plus (Qiagen Inc., Valencia CA), with 1% ß-

Mercaptoethanol and 5 µl of 3U proteinase-K, vortexed regularly and incubated for one to 

three hours at 56 Celsius, until completely homogenized. RNA was extracted from tissue 

homogenates using the AllPrep DNA/RNA Mini Kit (Qiagen Inc., Valencia CA) following 

manufacturer’s instructions. Extraction of RNA from nasal swabs, whole blood, blood 

clots and scat samples was performed using the QIAamp Cador Pathogen kit (Qiagen Inc., 

Valencia CA), using manufacturer’s instructions.  

 

All extracts were initially screened by qPCR for a 114 bp fragment of the P-gene based on 

previously described protocols (Scagliarini et al. 2007). Reactions were performed using 

the QIAGEN OneStep RT-PCR kit (Qiagen Inc., Valencia CA), and primers CDVF4 and 

CDVR3, and a TaqMan probe reporting in the FAM channel (Table 4.2). All reactions 

included a negative control, and either a modified live virus vaccine, or a synthetic CDV 

sequence as a positive control. Reactions were performed using a Bio-Rad Minopticon 

Cycler through 45 cycles, with a transcription step of 20 minutes at 50 Celsius, and an 
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annealing step of 30 seconds at 60 Celsius. Wells with characteristic amplification curves 

of cycle threshold <38 were considered to be positive. Samples that tested positive in at 

least one of three wells then underwent additional rounds of reverse transcription 

polymerase chain reaction (RT-PCR) amplification, using primer sets for a 429 bp 

fragment of P-gene (using primers Morb1/Morb2, Table 4.2), and a 291 bp fragment of the 

HA-gene (with primers TSCDVH2-F/ TSCDVH3-R, Table 4.2). Reactions were 

performed using a Bio-Rad Minopticon Cycler through 45 cycles, with a transcription step 

of 30 minutes at 50 Celsius, and an annealing step of 60 seconds at 45 Celsius. Products 

were separated by electrophoresis on a 1.5% agarose gel, and all extracts that produced 

bands of the expected molecular weight using both sets of primers were prioritized for 

further amplification and sequencing.  

 

Prioritized extracts were amplified by RT-PCR, using four sets of primers that covered the 

whole HA-gene modified from Müller et al. (2011) (1F/1R, 2Farctic/2Rarctic, 3Farctic/3R, 

4Farctic/4R, Table 4.2).  Reactions were performed using a Bio-Rad Minopticon Cycler 

through 45 cycles, with a transcription step of 30 minutes at 50 Celsius, and an annealing 

step of 55 seconds at 45 Celsius. Products were separated by electrophoresis on a 2.0% 

agarose gel, and bands of the expected molecular weight were cleaned using the ExoSAP-

IT reagent (Affymetrix, Santa Clara, CA), and directly sequenced in the forward and 

reverse directions (Genewiz Inc., South Plainfield, NJ).  

 

For positive samples that did not yield full-length HA-gene consensus sequences, DNA 

cloning techniques were employed to obtain additional sequences. Further DNA cloning 

was used to obtain near full-length F-gene sequences for all samples from which full-

length HA-genes were sequenced. RNA extracts were used to prepare cDNA for DNA 

cloning using the ProtoScript First Strand cDNA Synthesis Kit (New England Biolabs, 

Ipswich, MA) following manufacturer’s protocols, excluding the optional RNA 

denaturation step. The first strand DNA product was then amplified using Q5 High- 

Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA) and primers 

RusCDV5primUTR and RusCDV5primUTR (HA-gene) and CDV5primUTR and 

CDV3primUTR (F-gene) (Table 4.2) in a VERITI 96 well fast thermocycler (Applied 

Biosystems) through 35 cycles (with a denaturation step of 98 Celsius for 10 seconds, an



 

Table 4.2. Primer and probe sequences used in the detection of canine distemper virus (CDV). Nucleotide start and end positions are based on CDV strain 
A75/17 (GenBank accession no. AF164967). Restriction sequences used in cloning are indicated in red font. 
Primer 
target

Primer/probe name Primer sequence Start 
position

End   
position

Source

CDVF4 GTCGGTAATCGAGGATTCGAGAG 2,206 2,228
CDVR3 GCCGAAAGAATATCCCCAGTTAG 2,319 2,297
CDVProbe 6FAM-ATCTTCGCCAGAATCCTCAGTGCT-MGBNFQ 2,274 2,251
MorbF ATGTTTATGATCACAGCGGT 2,132 2,151
MorbR ATTGGGTTGCACCACTTGTC 2,560 2,541
TSCDVH2-F TACTGAGTCCAATTTAGTGGTGTTGCC 8,593 8,619
TSCDVH3-R CATGAGAATCTTATACGGAC 8,883 8,864
1F GGGCTCAGGTAGTCCARCAA 7,060 7,079
1R CCTCCGGAGAGTGCTGATAA 7,611 7,592
2Farctic GTGAGACAATTGGGATCAGA 7,539 7,558
2Rarctic TGGGTGAGCGACAGGTGTCA 8,098 8,079
3Farctic TGGGAATCTTTGGGGCAACA 8,037 8,056
3R TCCATAATCTGGGATGTTTGAA 8,580 8,559
4Farctic ATCCCTCATGTGTTATCATT 8,501 8,520
4R GACCTCAGGGTATAGAATCTGG 9,071 9,050
RusCDV5primUTR GCTCTGGTAGGAGAGCAATG 7,062 7,081
RusCDV5primUTR GTCCAATTGAGATGTGTATCATCATACT 8,931 8,904
AmurtigercdvHsalF GGATGTCGACACCATGCTCTCCTACCAAGATAAGGT 7,076 7,101
AmurtigercdvHnot1R GGATGCGGCCGCTCAAGGTTTTGAACGGTTACATGAG 8,902 8,878
CDV5primUTR ACAAGCCTCATGCACAAGGAAAT 4926 4948
CDV3primUTR GTGACTAGAGTGATTCAGAGTG 6,937 6,916
cdvFsal1Fwd GGATGTCGACATGCACAAGGAAATCC 4,935 4,950
cdvFnot1R GGATGCGGCCGCTCAGAGTGATCTTACATAG 6,923 6,905

P-gene 
(partial)

(Scagliarini et al., 
2007)

P-gene 
(partial) (Barrett et al., 1993)

HA-gene 
(partial) Unpublished

F-gene 
(complete) 
(cloning)

Unpublished

Unpublished

HA-gene 
(complete)

(Müller et al., 2011)

Modified from     
(Müller et al., 2011)
Modified from     
(Müller et al., 2011)
Modified from     
(Müller et al., 2011)

HA-gene 
(complete) 
(cloning)

Unpublished

Unpublished

 



Chapter 4. Molecular characterization  121 

annealing step of 50-72 Celsius for 30 seconds, and an extension step of 72 Celsius for 20 

seconds). A second round of DNA amplification was performed using primers 

AmurtigercdvHsalF and AmurtigercdvHnot1R (HA-gene) and cdvFsal1Fwd and 

cdvFnot1R (F-gene) (Table 4.2), to tag PCR products with recognition sites for the SalI 

and NotI restriction enzymes (New England Biolabs, Ipswich, MA). DNA fragments were 

then ligated into the pVR1012 DNA vaccine plasmid, for cloning in Escherichia coli. 

Cloned DNA was purified and directly sequenced in the forward and reverse direction 

using a Pacific Biosciences PacBio RS II sequencer (operated by GATC Biotech, UK). 

 

Illumina sequencing 

Blocks of FFPE tissues were sectioned using a microtome at a thickness of 10 µm, and 

deparaffinized using xylene. Ten sections per sample were extracted using the RNeasy 

FFPE kit (Qiagen Inc., Valencia CA). Synthesis of first strand cDNA was performed using 

Maxima H Minus Reverse Transcriptase (Thermo Fisher Scientific, Inc., Waltham, MA), 

from which double strand cDNA was generated using NEBNext mRNA Second Strand 

Synthesis Module (New England Biolabs, Ipswich, MA), and purified using Agencourt 

AMPure XP beads (Beckman Coulter, Brea, CA) at a 0.9 ratio. A KAPA library 

preparation kit (KAPA BioSciences, Wilmington, MA) was used to prepare the cDNA for 

Illumina sequencing with the following modifications to reduce sample input requirements. 

End-repaired cDNA was purified with AMPure XP beads at a 0.9 ratio to remove 

fragments shorter than 150 bp, and a ‘with-bead’ approach was used to reduce the sample 

losses during subsequent elution steps and tube transfer (Fisher et al. 2011). Adaptor 

concentration was reduced 100-fold, in order to maintain a favourable ratio of adaptor to 

sample DNA during ligation and prevent the formation of adaptor dimers. Adapter-ligated 

DNA was amplified with real-time PCR using a KAPA Hifi Real-time library 

amplification kit, on an ABI 7500 cycler. Index tags were added using either NEBnext 

multiplex oligonucleotides (New England Biolabs, Ipswich, MA), or equivalent 

oligonucleotides synthesised by TruGrade processing (Integrated DNA Technology, 

Coralville, IA) to reduce tag crossover. Amplified DNA was purified using AMPureXP 

beads and eluted in a final volume of 15 µl. Library DNA concentration was assessed 

using a Qubit 2.0 fluorometer, and an Agilent 2200 TapeStation was used to verify the 

final size profile of amplified library DNA and ensure no carry-over of primer dimers. Up 

to six DNA libraries with appropriate index tags were pooled, and 2x150 nt paired end 
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sequence data sets were generated on an Illumina MiSeq platform using 300-cycle v2 

reagents.  

 

Reads were mapped against all 30 full-length CDV genomes currently available on 

GenBank using Tanoti (http://www.bioinformatics.cvr.ac.uk/tanoti.php), a blast guided 

reference based short read aligner. Consensus genomes were built from assemblies using 

SAM2consensus, a consensus calling programme.  

 

Phylogenetic analyses 

Sequence data were analysed in three ways: 

1) Global phylogenies were estimated to assess geographic clade designation for all full 

length HA-genes obtained in this study, and a worldwide dataset including all full 

length HA-genes published on GenBank (maintained by the National Center for 

Biotechnology Information).  

2) Local phylogenies were estimated for all full length HA-gene and F-genes obtained in 

this study, to assess the relatedness of viruses from different host species, and spatial, 

and temporal scales. 

3) A molecular clock model was fitted using all HA genes obtained in this study, together 

with closely related HA-genes (>1,500 bp) from the global dataset.  

The worldwide dataset was obtained using a BLAST search based on the full genome 

sequence of wild-type CDV strain A75/17 (GenBank accession AF164967). Information 

on host species and date of collection for each sequence was extracted from GenBank 

metadata, or source publications. Sequences lacking host information, or specifying 

passage in cell culture, or in vitro recombination were removed from the dataset (although 

vaccine sequences were retained). Sequences were aligned using the MUSCLE algorithm 

using the software Geneious (version 8.1.8) and were edited manually. Worldwide datasets 

were trimmed to the bases equivalent to the A75/17 strain, with bases 7,079 to 8,902 

indicating the HA-gene (length 1,824 bp).  
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Appropriate nucleotide substitution models were identified using jModeltest 2 version 

2.1.8 (Guindon and Gascuel 2003, Darriba et al. 2012), with best fit models selected based 

on lowest Akaike information criterion (AIC) scores. Best fit models were used in the 

construction of maximum likelihood phylogenetic trees using the Geneious phyML plug-

in, and 500 bootstrap replicates to determine branch support (Guindon and Gascuel 2003).  

 

The viral evolutionary rate was inferred by fitting a molecular clock model to sequence 

alignments using a Bayesian Markov chain Monte Carlo (MCMC) approach. Preliminary 

analyses used the software Path-O-Gen v1.4 (Rambaut et al. 2016) to ensure that 

sequences were evolving in a clock-like manner.  Analyses were performed using the 

BEAUti/BEAST package v1.8.3 (Drummond et al. 2012) under a relaxed molecular clock 

model with branch rates drawn from a lognormal relaxed clock distribution (to allow for 

variation in evolutionary rate in each branch, Drummond et al. 2006),  using a normally 

distributed clock prior with mean of 4 x 10-4 nucleotide substitutions per site  based on the 

results of Panzera et al. (2015), with a wide standard deviation of 0.4 nucleotide 

substitutions per site, and truncated to between 0 and 2.0. The Bayesian skyline model was 

used as a flexible demographic prior, and two independent MCMC chains were run for 107 

iterations. Convergence was assessed using TRACER v1.6, and skyline plots were 

examined to determine a suitable burn-in period.  

 

Results 

The number of samples analysed from all sources are summarized in Table 4.3. Of the 633 

healthy dogs sampled during the household surveys, owners reported that 472 were 

unvaccinated. Among the wild carnivore species sampled, sable (Martes zibellina) 

specimens were the most abundant species represented in the sample set.  

 

Sanger sequencing 

Of 1,664 samples tested (representing 1,424 individuals and 35 scats), 75 were found to be 

positive for the 114 bp fragment of the CDV P-gene by qPCR. Full-length HA-gene 

sequences were obtained for 11 of these by assembling consensus sequences from the four 
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Table 4.3. Summary of samples tested for the presence of canine distemper virus, and of 
haemagglutinin (HA) and fusion (F) genes sequenced. 

Survey Species common 
name 

Species 
scientific name Sample type n HA F 

Household surveys       
  Domestic dog Canis familiaris Nasal swab 633 0 0 
      Whole blood* 205 0 0 
Clinic surveys      

  Domestic dog Canis familiaris Conjunctival swab 75 <1** 0 

Dead wild carnivores      

  Leopard cat Prionailurus 
bengalensis  Tissue 30 0 0 

  Eurasian lynx Lynx lynx Tissue 4 0 0 
  Leopard Panthera pardus Tissue 1 <1** 0 
  Tiger Panthera tigris Tissue 3 1 0 
  Grey wolf Canis lupus Tissue 2 1 0 

  Raccoon dog Nyctereutes 
procyonoides  Tissue 27 1 1 

  Red fox Vulpes vulpes Tissue 9 0 0 
  Asiatic black bear Ursus thibetanus Tissue 1 0 0 
  Sable Martes zibellina  Tissue 518 17† 9 

  Yellow-throated 
marten Martes flavigula  Tissue 3 0 0 

  Siberian weasel Mustela sibrica Tissue 27 1 1 
  American mink Neovison vison Tissue 4 0 0 
  River otter Lutra lutra Tissue 3 0 0 
  Asian badger Meles leucurus  Tissue 5 1 1 
  Unidentified Unidentified Tissue 1 1 0 
Wildlife surveys      
  Sable Martes zibellina  Nasal swab 2 0 0 
  Asian badger Meles leucurus  Nasal swab 17 0 0 

  Leopard cat Prionailurus 
bengalensis  Nasal swab 8 0 0 

  Raccoon dog Nyctereutes 
procyonoides  Nasal swab 10 0 0 

Archived blood      
  Eurasian lynx Lynx lynx Serum 1 0 0 

  Leopard Panthera pardus Whole blood /clots 2 0 0 

  Tiger Panthera tigris Whole blood /clots 20 1 0 

  Raccoon dog Nyctereutes 
procyonoides  Serum 6 0 0 

  Asiatic black bear Ursus thibetanus Serum 2 0 0 

  Brown bear Ursus arctos Whole blood /clots 1 0 0 

  Asian badger Meles leucurus  Serum 5 0 0 
Ilumina sequencing       
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  Tiger Panthera tigris 
Formalin fixed 
paraffin embedded 
tissue blocks 

4 1§ 1§ 

Scat survey       
  Tiger Panthera tigris Faeces 35 0 0 

   TOTAL 1,664 25† 13 
 * The 205 whole blood samples were analysed from a subset of the 633 dogs tested during 

passive surveillance, and so do not represent additional individuals.  
**Refers to a partial length sequence. 
† Figure includes an HA gene from which a gap of 442 base pairs could not be sequenced. 
§ Full virus genome obtained from one animal.  
 

 

primer sets that spanned the HA-gene, and a further 12 were obtained from DNA cloning.  

An additional partial HA-gene sequence was obtained with a 442 bp gap (KX708733, 

Table 4.4). Corresponding full-length F-gene sequences were successfully obtained for 12 

of the 23 full-length HA-genes. Sequences were submitted to GenBank under accession 

numbers KX708710-KX708733 for the HA- gene, and KX708734- KX708745for the F-

gene. In addition, a 429 bp fragment of the P-gene, and a 528 bp fragment of the H-gene 

was obtained from the sick leopard that died in 2015. Also, in 2016 a 390 bp fragment of P 

gene, and a 529 bp fragment of the HA was obtained from the sick domestic dog in 

Vladivostok. Further sequencing is underway to obtain full HA gene sequences from both 

of these viruses. 

 

Little information was available on the health of many of the wild carnivores that tested 

positive for CDV infection. Most viruses were detected in sables and a Siberian weasel that 

were captured in the wild by fur trappers, and it is unknown whether ill health may 

predispose animals to capture. Several viruses were detected in animals that were found 

dead, including a raccoon dog (that died in a vehicle collision), an Asian badger (found 

dead in the forest), and a grey wolf (which also showed signs consistent with a severe 

infestation with Sarcoptes scabei, including near total alopecia), and it is possible that 

CDV infection could have contributed to death in these cases.  

 

Virus was also detected from two tigers, and a leopard that were diagnosed during the 

course of the study. Infection with CDV was not suspected in either of the two tiger cases 

prior to diagnosis, indicating that some clinically affected animals may fall outside the case 
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definition used in Russia (typified by neurological signs including a loss of fear and 

aggression, approachability, ataxia and sensory deficits). One of these animals had died 

following a gunshot wound, but its body was otherwise intact (suggesting the death was 

not linked to poaching). The second tiger was sampled as a 13 month old cub, that was 

repeatedly observed along a roadside, displaying an indifference to vehicles. At the time 

this behaviour was attributed to juvenile naivety. The cub disappeared four months after 

sampling, and was assumed to have been poached. The leopard case showed clinical signs 

consistent with advanced neurological stages of CDV infection, and died despite 17 days 

of supportive care in a rehabilitation center. Further details of these cases are presented in 

Appendix II.  

 

Illumina sequencing 

Libraries were prepared using FFPE tissues from four tigers: PT61/Pt 2004 (brain), 

PT90/Pt 2010-1 (lymph node) and Pt 2010-2 (lymph node), and PT56/Pt 2010-3 (brain), 

from which between 5,482,492 and 10,872,522 reads were obtained. These reads were 

mapped against 30 full-length CDV genomes available on GenBank. Among these, two 

samples from PT61/Pt 2004 had approximately 95,000 reads that mapped to the CDV 

genome. Samples from PT90/Pt 2010-1 and Pt 2010-2 had ten or fewer mapped reads, 

whereas the sample from Pt 2010-2 had approximately 780 mapped reads. Of thirty 

references, the sequence KF914669, derived from a dog in Italy in 2013 was found to share 

the greatest identity, and was used for subsequent viral genome assembly using Tanoti.  

The coverage and depth of assemblies are summarized in Table 4.5. The consensus 

sequence fragments from PT56/Pt 2010-3 were distributed throughout the genome and 

varied in length from 74 bp to 327 bp. These included a fragment of 106 bp within the HA-

gene, and two sections within the F-gene including a 57 bp section within the Fsp region, 

and 93 bp in the F1 region. Only 10 reads obtained from PT90/Pt 2010-1 mapped to 

KF914669, equating to 3.6% of the genome, but no overlapping contigs were found. None 

of the reads from Pt 2010-2 mapped to reference strain KF914669. The sequence for 

PT61/Pt 2004 was submitted to GenBank (KX774415, Table 4.4). 

 

Infections with CDV had previously been confirmed in both PT61/Pt 2004 and PT56/Pt 

2010-3 (Seimon et al. 2013), but these results greatly increased the coverage from the 

former of these. The limited reads from PT90/Pt 2010-1 represented the first confirmation 
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Table 4.4. A summary of complete (COMP) and partial (PART) haemagglutinin gene (HA) and 
fusion gene (F) sequences obtained from carnivores in the Russian Far East. Includes host 
species, location of origin (KH = Khabarovskii Krai, TY = Terneiskii district, PZ = Pozharskii 
district, LZ = Lazovskii district, SW = Southwest Primorskii, VL = Vladivostok), and GenBank 
accession number. 

Animal ID Species Study 
area

HA 
gene F gene

Accession 
number 
(HA)

Accession 
number 
(F)

HNT20 Unidentified 
small carnivore

TY COMP - KX708732 -

PT61/Pt 2004 Amur tiger KH COMP COMP KX774415 KX774415
PT79 Amur tiger TY COMP - KX708720 -
FUR0056 Sable TY COMP COMP KX708721 KX708734
FUR0061 Sable TY COMP COMP KX708722 KX708735
FUR0074 Grey wolf TY COMP - KX708711 -
FUR0076 Sable TY COMP - KX708712 -
FUR0134 Sable TY COMP COMP KX708713 KX708736
FUR0140 Sable PZ COMP COMP KX708710 KX708737
FUR0141 Sable TY COMP - KX708714 -
FUR0188 Sable PZ COMP COMP KX708723 KX708738
FUR0192 Sable PZ COMP COMP KX708724 KX708739
FUR0207 Sable TY COMP COMP KX708715 KX708740
FUR0244 Sable PZ COMP COMP KX708716 KX708741
FUR0251 Siberian weasel PZ COMP COMP KX708717 KX708742
FUR0258 Sable PZ COMP COMP KX708725 KX708743
FUR0309 Asian badger SW COMP COMP KX708718 KX708744
FUR0310 Amur tiger SW COMP - KX708726 -
FUR0319 Raccoon dog SW COMP COMP KX708727 KX708745
FUR0326 Sable LZ PART - KX708733 -
FUR0332 Sable LZ COMP - KX708719 -
FUR0336 Sable LZ COMP - KX708728 -
FUR0364 Sable LZ COMP - KX708729 -
FUR0378 Sable LZ COMP - KX708730 -
FUR0596 Sable TY COMP - KX708731 -  

 

Table 4.5. Summary of Illumina sequence data obtained from formalin-fixed tiger tissues in 
paraffin embedded blocks. 

Tiger identifier
Total   
reads

Number of 
reads 
mapped to 
reference 
(KF914669)

Percentage 
coverage to 
reference 
(KF914669)

Depth of 
coverage to 
reference 
(KF914669)

PT61/Pt 2004 10,872,522 95,021 99.20% 806
PT90/Pt 2010-1 7,143,772 10 3.60% 0
Pt 2010-2 6,571,996 0 0.00% 0
PT56/Pt 2010-3 5,482,492 816 16.50% 7  
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that this tiger was infected with CDV at the time of its death. This eleven year old male 

was responsible for a fatal attack of a local fisherman, and was subsequently killed by 

Russian authorities (Appendices I and II). 

 

The consensus sequence from PT61/Pt 2004 was analysed to identify unique non-

synonymous substitutions, by aligning it against all 51 full CDV genomes available on 

GenBank (Appendix XVII). Non-coding regions were trimmed, and individual genes were 

translated for direct comparison (Table 4.6). Gaps in the PT61/Pt 2004 consensus 

prevented the translation of amino acid residues in the F-protein (3 residues), HA-protein 

(1 residue) and large protein (16 residues, Table 4.7). A stop codon at residue number 55 

on the matrix protein was likely due to a sequencing error. The PT61/Pt 2004 consensus 

included 76 unique amino acid substitutions, which were not present in the other 51 

published full genomes (Tables 4.6, and 4.7). The non-structural C-protein had the highest 

proportion of unique substitutions (2.9%), followed by the structural L-protein (1.9%). 

Unique residues were concentrated in three regions near the 3’ end of the L protein 

(residue positions 1,714–1,783, 1,867–1,890, 2,026–2,084, Figure 4.2).  

 

Phylogenetic analyses 

A global phylogeny was prepared from a dataset of 521 full-length HA-genes sequences 

were obtained from GenBank (excluding sequences lacking host information, or where 

passage in cell culture or in vitro recombination were specified). Additionally, two 

unpublished HA sequences were obtained from Arctic foxes (Vulpes lagopus) sampled in 

Barrow, Alaska in 2012 and 2014 (samples donated by K. Beckmen, Alaska Dept. of Fish 

and Game, amplified by E. Dubovi, Cornell University, and sequenced by P. Duprex, 

Boston University). All sequences from Primorskii, Alaska and the global dataset were 

aligned, and found to have pairwise nucleotide identities of 87.2-100%. Pairwise amino 

acid identity was 81.5-100%. A transitional model with a gamma distribution (TIM1+G) 

was found to be optimal, and was used to generate a maximum likelihood tree (Figure 4.3). 

All HA sequences from Primorskii wildlife, and Alaska clustered within the Arctic-like 

clade in the global dataset. Primorskii sequences were all markedly different from that of 

the Onderstepoort vaccine (pairwise nucleotide identity of 91.3-91.7%, and pairwise amino 

acid identity of 89.1-90.1%). 
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Figure 4.2. Protein map of PT61/Pt 2004, illustrating the position of unique residues (red), 
residues that could not be translated due to gaps in the genome (black), and a stop codon 
within the M gene (green), which is likely to represent a sequencing error. Positions of 
motifs for attachment of N-glycan side chains are shown in blue triangles. The green square 
indicates the K-L-N-E-I motif at positions 110-114 that is critical to interaction between the 
HA and F proteins. The red circle indicates key residues (525Y, 526D, and 529R) in the 
receptor-binding site. 
 

Table 4.6. Summary of unique amino acid residues in coding regions of the PT61/Pt 2004 
consensus sequence compared to all 51 other full genome sequences published on 
GenBank 

Protein
Unique 

residues in 
PT61/Pt 2004

Gaps in     
PT61/Pt 2004 
consensus

Protein 
length

Percentage 
of unique 
residues

N 6 - 523 1.1%
P 5 - 507 1.0%
V 5 - 299 1.7%
C 5 - 174 2.9%
M 3 - 335 0.9%
F 10 3 662 1.5%
HA 11 1 607 1.8%
L 41 16 2,184 1.9%

Total 96 20 4,818 2.0%  
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Table 4.7. Unique amino acid residues within the PT61/Pt 2004 consensus sequence that 
were not represented within 51 other full genome sequences published on GenBank. 

 

 

All published sequences in the Arctic-like clade that exceed 1,500 bp are summarized in 

Appendix XVIII. A sequence from a dog in Italy in 2005 (DQ226088) identified most 

closely with the Primorskii wildlife sequences, with a pairwise nucleotide identity of 97.7-

98.4% and an amino acid identity of 96.7-97.7%. A similar level of identity was found 

with an Arctic-like sequence (EF445052), obtained in 2005 from a farmed fox from the 

Chinese province of Heilongjiang (which borders Primorskii), which shared a pairwise 

nucleotide identity of 97.5-98.4% and an amino acid identity of 96.3-97.3% with 

Primorskii wildlife viruses.  

 

The P-gene fragment from a Primorskii dog shared the greatest nucleotide identity (98.7%) 

with an Asia 4 clade sequence obtained from a dog in Thailand in 2007 (AB299204). The 

539 bp region of the HA-gene from this dog also showed highest identity with Asia 4 clade 

viruses, sharing 98.4% nucleotide identity with AB301065 and AB301066 also collected 

from Thai dogs in 2007. The partial HA-gene from the leopard shared 99.8% nucleotide 

identity with a sequence from the Arctic-like clade obtained from an Asian badger 

(FUR0309) in Southwest Primorskii during 2013.   



 

 

Figure 4.3. Maximum likelihood phylogenetic tree constructed using Primorskii and worldwide sequences of the complete haemagglutinin gene of canine 
distemper virus. obtained in Russia, and 512 worldwide obtained from GenBank. Trees were constructed using the software Geneious v8.1.8 and the 
PHYML plug-in, with the transitional substitution model with gamma distribution, and 500 replications to obtain bootstrap branch support. Major nodes 
with >0.80 support are illustrated using a black point. Colours are used to indicate continent of origin (Asia = blue; Europe = red; North America = green; 
Latin America = purple; Africa = orange). Blue shading indicates Primorskii wildlife sequences, and the position of the dog sequence is noted by a red star. 
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The global HA dataset included large numbers of sequences from countries in the vicinity 

of Primorskii Krai, including China (n=167 sequences), Republic of Korea (n=33), and 

Japan (n=57). The majority of viruses in China fell within the Asia-1 clade (92.2%, 

n=167), with the remainder identified as Arctic-like (1.8%), Asia-3 (1.2%), Asia-4 (1.8%) 

or America-1 (3.0%, which were likely of vaccine origin). All three Arctic-like sequences 

from China originated from the northeast of the country, in provinces bordering Primorskii 

Krai (Heilongjiang and Jilin). Although 95 non-domestic species were sampled in China it 

was unclear whether any of these represented free-ranging animals, with most likely 

originating from fur farms or zoological collections. Other countries in the East Asian 

region where CDV sequences were reported from wild species (particularly raccoon dogs) 

included the Republic of Korea and Japan, and all of these aligned within either the Asia-1 

or Asia-2 clades. No viruses from the Arctic-like clade have been detected in the Republic 

of Korea or Japan.  

 

Local phylogenies were prepared using maximum likelihood methods for the 24 Primorskii 

wildlife HA-gene and 13 F-gene sequences obtained using Sanger and Illumina methods 

using substitution models of Hasegawa, Kishino and Yano (HKY) and a transversion 

model with proportion of invariable sites (TVM+I) respectively (Figure 4.4). The topology 

was found to be consistent for both trees. Sequences for HA and F-genes were found to 

have an identity of 97.9-100% and 97.5-100% respectively, with an amino acid identity of 

96.8-100% for both genes.  

 

Older sequences from tigers sampled in 2003 (PT61/Pt 2004), and 2006 (PT79) branched 

closer to the base than more recent sequences obtained between 2011 and 2015. Recent 

sequences branched into two main clades; hereafter designated as clade 1 and clade 2 

(Figure 4.4A). Sample locations are indicated in Figures 4.4C-D. Sequences in Clade 1 

included sables and a Siberian weasel that were collected in Bikin (during 2012/13), sables 

from Terneiskii (during 2012/13) and Lazovskii (during 2013/14). Clade 2 branched into 

three subclades; 2.1 comprising an Asian badger and a raccoon dog from Southwest 

Primorskii (2012/13), an unidentified wild carnivore and a sable from Terneiskii (from 

2011/12 and 2013/14 respectively), and 2.2 comprising a tiger from Southwest Primorskii 

(2013/14), and a sable from Lazovskii (2013/14), and 2.3 comprising two sable and a grey 

wolf from Terneiskii (2012/13).  
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Figure 4.4. Phylogenetic trees constructed using complete haemagglutinin (HA) gene (A & 
C), and fusion (F) gene (B & D) of canine distemper viruses obtained in Russia. Trees were 
constructed using maximum likelihood methods, with substitution models Hasegawa, 
Kishino and Yano (HKY) (HA-gene) or a transversion model with proportion of invariable 
sites (F-gene), and 1,000 replications to obtain bootstrap branch support. Informal clade 
designations are highlighted in A and B (clade 1 = red, subclade 2.1 = blue, subclade 2.2 = 
green, subclade 2.3 = yellow). Use of colour indicates location of origin in C and D 
(Khabarovskii Krai = pink, Terneiskii district = dark blue, Pozharskii district = light blue, 
Lazovskii district = red, Southwest Primorskii = green). 
 

A molecular clock model was fitted to an alignment of all HA-genes obtained from 

Primorskii wildlife, together with all 38 Arctic-like sequences from GenBank and Alaska 

exceeding 1,500 bp (Appendix XVIII). Results from BEAST analysis showed a molecular 

clock rate of 7.5 x 10-4 nucleotide substitutions per site for these sequences (95% Highest 

Posterior Density (HPD): 4.8 x 10-4 - 1.0 x 10-3). The Alaskan lineage was estimated to 

have diverged from the Eurasian clade in 1986 (95% HPD: 1981-1992), and the Primorskii 

viruses were estimated to have diverged from the European viruses in 1989 (95% HPD: 

1984-1994, Figure 4.5). The Primorskii subclades were estimated to have diverged 

between 2005 (95% HPD: 2003-2008) and 2007 (95% HPD: 2004-2010, Figure 4.5). 
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Figure 4.5. A time-calibrated phylogeny generated in ‘BEAST’ using haemagglutinin gene 
sequences ≥ 1,500 base pairs for all available canine distemper viruses in the Arctic-like 
clade. Markov Chain Monte Carlo chains were performed using BEAST v1.8.3 under a 
relaxed molecular clock model with branch rates drawn from a log normal distribution, a 
normally distributed clock prior with mean of 4 x 10-4 nucleotide substitutions per site, with 
a standard deviation of 0.4 nucleotide substitutions per site, and truncated to between 0 and 
2.0. Colours are used to indicate continent of origin (Asia = blue; Europe = red; North 
America = green). Blue shading indicates Primorskii wildlife sequences. 
 

Translated HA-genes from Primorskii were all found to have N residues at amino acid 

position 530, which had been proposed as enhancing infection of non-dog hosts. All 

Primorskii wildlife sequences carried the dog-like Y residue at position 549 of the HA-

protein. This residue is shared by all other Arctic-like viruses with the exception of those 

from two Italian Eurasian badgers (KX024708 and KX024708), and an Italian dog 

(KM115535).  Motifs representing potential sites for N-glycosylation (N-X-S/T) were 

found in all Primorskii sequences at positions N21, N149, N391, N422, N456, N587 and 

N603, as well as the alternative N-glycocylation site (N-Y-C) at N152. However, potential 

N-glycan N309 was only found in sequences from PT61/Pt 2004, PT79, all representatives 

of Primorskii subclades 2.1, 2.2 and a sable FUR0141. As expected, all Primorskii viruses 
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bore the residues Y525, D526, and R529 that are critical to efficient SLAM-binding 

(Zipperle et al. 2010), and the characteristic K-L-N-E-I motif at positions 110-114, that are 

conserved in all CDV viruses, and are understood to be critical to interaction between the 

H and F proteins (Lee et al. 2008).  

 

All Primorskii fusion proteins included the cleavage motifs at residues 135/136, and 

224/225. The sequence from PT61/Pt 2004 shared all five N-glycosylation sites that are 

found in the Onderstepoort vaccine strain (at N residues 62, 141, 173, 179, and 517). All 

other Primorskii viruses lacked the N-glycan site at residue 62, as has been recorded in 

other Asian strains (Lee et al. 2013).  

 

Discussion 

The detection of CDV in tigers and a leopard in 2003, 2006, 2010, 2013 and 2015, 

confirms that infection in these threatened populations is occurring on a regular basis. All 

viruses from large carnivores fell within the Arctic-like clade of CDV, and aligned closely 

to sequences obtained from mesocarnivores from Primorskii. While sequences from tiger 

viruses obtained in 2003 and 2006 diverged at basal positions in the Primorskii lineage, the 

sequence from the tiger in 2013 shared a recent common ancestors with sequences 

obtained from mesocarnivores (TMRCA of 1.2 years). Although the species identity of 

hosts infected with these MRCAs remains unknown, the short time elapsed suggests a 

likely wildlife origin. By contrast, the only virus detected in domestic dogs belonged to the 

Asia-4 clade of CDV, and is only distantly related to sequences detected in wildlife. 

Although Arctic-like CDV was not detected within the dog population, the presence of 

undetected Arctic-like viruses among Primorskii’s dogs cannot be excluded.  However, 

considering the comparative ease with which Arctic-like viruses were detected in wildlife 

over a wide area, it seems unlikely that the strain is common in dogs, suggesting a limited 

role in viral maintenance.  

 

Arctic-like viruses are rare in neighbouring China, with the only examples having been 

sequences from provinces in the northeast of the country neighbouring Primorskii Krai. 

Although the Chinese fur-farming industry is mainly based in northeastern provinces, 

Asia-1 viruses predominate in this sector (81/86 sequences), and only three Arctic-like 
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sequences have been reported (Appendix XVIII, Zhao et al. 2010).  If domestic dogs were 

important to the maintenance of Arctic-like viruses then a wider distribution might be 

expected, as sequences from dog hosts have been obtained from throughout China.  

Heilongjiang and Nei Mongolia lie at the southern limit of the taiga forest found 

throughout Primorskii, which extends north into Eastern Siberia and west toward Lake 

Baikal. While the ranges of some wild carnivore species (such as Asian badger and red 

fox) extend south beyond the taiga zone, others such as sable reach their southern limit in 

the Manchurian forests in this region (Monakhov 2011). The distribution of Arctic-like 

viruses in China might therefore be a consequence of the ranges of wildlife hosts, and their 

absence in the rest of the country suggests that they are unlikely to be maintained in 

domestic populations.  

 

The wide distribution of Arctic-like CDV suggests a mode of dispersal that differs from 

other more geographically restricted clades, and comprises large parts of the world where 

wild carnivores outnumber dogs. With the exception of the America-1 strain used in 

vaccines, the Arctic-like clade is the most geographically dispersed of all CDV lineages 

(Figure 4.3). Sequences within this clade have been detected from Europe (Austria, 

Hungary, Switzerland and Italy), Greenland, Russia (including Lake Baikal), China and the 

United States (Alaska and Missouri, Appendix XVIII). This wide distribution contrasts 

with that of most other lineages, which are found in relatively limited geographical areas 

(Figure 4.3, Bolt et al.1997; Martella et al.2006). In North America, Europe and China, 

Arctic-like viruses are sympatric with other major lineages, raising the question of why 

these viruses should disseminate so readily, while other co-circulating strains remain 

relatively localised. Alternate modes of dispersal could occur along anthropogenic routes 

(e.g. movement of infected dogs), via wildlife-mediated transmission, or a combination of 

the two. The more northerly range of Arctic-like viruses, particularly in areas of low 

human habitation in Russia, Alaska and Greenland may hint at a role for wild carnivores. 

However, dispersal along human transport routes has also been documented (Nambulli et 

al. 2016), and might be a more plausible explanation for two Arctic-like viruses in 

Missouri that are placed basal to the European Arctic-like clade (Figure 4.5). Of the 

published Arctic-like sequences, 80% (n=49, Appendix XVIII) were obtained from 

domestic dogs, but this may reflect the comparative ease of sampling a domestic animal 

versus a wild one. However, while their role in the maintenance and dispersal of Arctic-

like viruses may be open to debate, the inclusion of dogs among known hosts suggests 

some involvement in the epidemiology of the clade. Although current data may be 
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insufficient to definitively assess the relative roles of dogs and wildlife in the dispersal of 

the Arctic-like clade, it is clear that its distribution is distinct from other CDV viruses, and 

the ease with which it moves through sparsely populated regions may suggest an important 

role for wildlife in its epidemiology.   

 

Wildlife viruses from Primorskii are spatially well-mixed (Figures 4.4C and D), suggesting 

long chains of transmission in wild species, which supports the case for wildlife 

maintenance (Viana et al. 2014). By definition, chains of transmission in maintenance 

populations will be long, or in some cases indefinite. Over time, the spatial distribution of 

individual viral lineages may change within the limits of host population structure, due to 

the dispersal of infected animals, or more gradually through infection between neighbours. 

Conversely, outbreaks in non-maintenance populations, that rely on spillover from a more 

abundant reservoir will tend to have much shorter chains of transmission, resulting in a 

more localized distribution, that dies out quickly. The topology of phylogenetic trees 

constructed using both HA and F-genes indicates a high degree of spatial mixing of viruses 

infecting mesocarnivores in Primorskii (Figure 4.4). Of the main Primorskii wildlife 

subclades, three of the four lineages include sequences representing two or more sampling 

areas. The clustering of sequences from disparate geographical locations suggests that 

CDV is circulating among mesocarnivores over a wide spatial area, and is consistent with 

their contributing to the maintenance of the virus.  

 

Previous studies have proposed two amino acid substitutions on the HA glycoprotein that 

may promote infection in non-dog hosts (G/E530R/D/N and Y549H, McCarthy et al. 2007, 

Nikolin et al. 2012b). Although all wildlife sequences from Primorskii carried an 

asparagine residue at position 530 (proposed as favouring infection in non-dog hosts), the 

importance of this residue has since been dismissed as it relates more strongly to 

phylogeographic clade than host identity (Nikolin et al. 2012b). By contrast, all CDV 

sequences from wildlife in Primorskii carried a tyrosine (Y) residue at position 549 of the 

HA glycoprotein, which is more common in domestic dogs (McCarthy et al. 2007, Nikolin 

et al. 2012b), and has been shown by in vitro experiments to be ‘dog adaptive’ (Nikolin et 

al. 2012a). This experimental work suggests that 549Y is more efficient at infecting dog 

cell lines than viruses carrying the more generalist Y549H substitution (which is adapted to 

infecting cell lines from a wider range of host species). If these findings were to apply to a 

wild situation, it might be assumed that 549Y could only persist in a maintenance 
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community containing large numbers of domestic dogs, where it had a selective advantage. 

Conversely, a maintenance community dominated by wildlife species should favour the 

selection of the more generalist Y549H substitution, which is more efficient at replicating 

in a wide range of species. While there is a bias in the global non-canid dataset toward 

549H, it is not invariably present. This could be interpreted in several ways. Experiments 

have shown that the Y549H substitution is rapidly acquired during passage in ferrets (von 

Messling et al. 2003), so the presence of 549Y in a non-canid could simply reflect a virus 

contracted directly from a dog host. Alternatively, the importance of the Y549H 

substitution in promoting infection across a wider range of hosts may have been overstated, 

and other factors are preventing its selection in a reservoir where wild carnivores 

predominate. This might arise if 549Y were also adaptive in another, as yet unidentified 

wild carnivore that is well represented in the Primorskii reservoir system. Unless future 

studies are able to demonstrate extensive involvement of Primorskii dogs in the circulation 

of Arctic-like CDV, it seems that the second explanation is most likely, and the virology of 

the Y549H mutation is more complex than has been realized.  

 

The only mutations recorded in Primorskii viruses at positions of known functional 

significance were those affecting the N-glycocylation of the HA-protein. The presence of 

N-glycan chains on the HA-glycoprotein of CDV affects the structure and virulence of 

viruses (Sawatsky and von Messling 2010), with removal of N-glycans associated with a 

reduction in pathogenicity (Sawatsky and von Messling 2010). The HA-gene of most wild-

type CDVs includes at least eight motifs for potential N-glycosylation (with asparagine 

residues at positions 21, 149, 309, 391, 422, 456, 587, and 603, Sawatsky and von 

Messling 2010), with almost all Asia-1 clade viruses carrying an additional motif at N584 

(Iwatsuki et al. 1997). All of these N-glycan motifs were found in Primorskii viruses, with 

the exception of 309N, which was absent in 13/24 viruses. All Arctic-like viruses form 

other pars of the world, and viruses of all clades arising from Panthera species possess an 

N-glycan motif at position 309N. Whether the loss of this motif incurs any functional 

change on the virus is unknown, and it is notable that only some of the potential 

glycosylation sites carry N-glycans in wild-type viruses (Sawatsky and von Messling, 

2010).  

Residues on the HA glycoprotein within the receptor binding site all carried typical 

signatures (Y525, D526, and R529), and the K-L-N-E-I motif at positions 110-114 (critical 

to interaction between the HA and F proteins, Lee et al.2008) was also intact. All F-
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glycoproteins carried the cleavage motifs at residues 135/136, and 224/225. The sequence 

from PT61/Pt 2004 shared all five N-glycosylation sites on the F-protein that are found in 

the Onderstepoort vaccine strain (at N residues 62, 141, 173, 179, and 517). All other 

Primorskii viruses lacked the N-glycan site at residue 62, as has been recorded in other 

Asian strains (Lee et al. 2013). Although only one full genome was sequenced from 

Primorskii, clusters of amino acid substitutions within the L-protein suggest that positive 

selection may be occurring at these sites. To date, virtually all research on substitutions 

that influence host adaptation have focused on the external HA-protein, however the 

present findings suggest that internal proteins, particularly the L-protein warrant further 

attention.  

 

The molecular clock model used to describe substitution rates within the HA-genes, 

provided a detailed account of the evolution of Arctic-like CDV viruses, with high 

posterior support for most nodes. From this, it was evident that the main geographic 

subclades appear to have diverged within a fairly discrete time period, with viruses from 

China and the subclades in Europe, Alaska, and Primorskii all diverging between 1986 and 

1989. This period coincided with two major events in the history of the Morbillivirus 

genus: the first report of Arctic-like CDV in Baikal seals (Phoca sibirica, Grachev et 

al.1989; Osterhaus et al.1989), in 1988, and the first recorded outbreak of CDV congener, 

phocine distemper virus (PDV) that affected harbour seals in the North Sea (Heide-

Jorgensen et al. 1992). While we don’t know where the most recent common ancestor 

(MRCA) of the main Arctic-like subclades originated, the Holarctic-wide distribution of 

progeny lineages is suggestive of a northern origin, where lines of dispersal into Europe, 

Asia and North America are shortest. Coincidentally, PDV is also thought to have 

originated in the Arctic waters of the Barents Sea, and been carried south in a large scale 

movement of harp seals (Pagophilus groenlandicus, Dietz et al.1989). It is tempting to 

speculate that the timing of these two outbreaks, and of the divergence of Arctic-like CDV 

may not have happened by chance, and similar drivers could have been responsible for all 

three events. Possible drivers could include sudden increases in the size of reservoir 

populations, changes in animal movement patterns (e.g. driven by changes in food 

availability, or climatic extremes), or a combination of factors that increase contact 

between populations of susceptible species.  

On a more local level, the divergence of the main subclades of wildlife viruses in 

Primorskii during the mid-2000s suggests an epizootic may have occurred at this time. The 
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viruses within Primorskii subclade 1 diverged from those in subclade 2 in approximately 

2005, with 2.1, 2.2 and 2.3 all diverging around 2006-2007. This radiation of CDV 

diversity might suggest the occurrence of a local epizootic in Primorskii during the mid-

2000s, which gave rise to all modern sublineages. The first case of CDV in a wild tiger, 

which occurred during late 2003, falls within the 95% HPD estimates for this divergence, 

and may have been part of this epizootic (Quigley et al. 2010, Seimon et al. 2013). The 

apparent lack of tiger cases before this date might therefore reflect a true expansion of the 

virus into Primorskii, rather than a failure to detect CDV cases prior to 2003.  

 

It is important to recognize that interpretation of trees produced using a molecular clock 

model is heavily influenced by the availability of sequences used in its construction. For 

instance, a previous study applied a molecular clock model to 208 published CDV 

sequences from throughout the world (Panzera et al. 2015). While the timing of divergence 

within the Arctic-like clade in that study was similar to that found here, the author’s 

interpretation of worldwide CDV dispersal is limited, as they fail to recognise the 

shortcomings of their available dataset. While an Arctic-like strain from Greenland in 1988 

(Z47760), and more recent Italian strains may have diverged from a MRCA in 

approximately 1967, that does not imply that the virus moved directly between Greenland 

and Italy at that time. Had a greater number of sequences been available from a wider 

geographic area the conclusions may have been quite different. An alternate and perhaps 

more likely explanation would involve an MRCA at a third site, perhaps in the Arctic, that 

gave rise to more southerly viral lineages in Greenland and Italy. Similar errors are made 

when assuming the direction of viral transmission occurs from domestic to wild hosts, 

based on a dataset that is biased to domestic dogs (which are more readily sampled). While 

the distinction may appear to be slight, it does have major implications for interpreting 

potential routes of dispersal, and whether this is achieved through anthropogenic or 

wildlife transmission chains.  

 

The detection of the Asia-4 clade viruses from sick domestic dogs in Vladivostok was 

unexpected. This recently described clade was initially detected in Thailand, and has also 

been found in three dogs in Central China (Radtanakatikanon et al. 2013, Bi et al. 2014). 

The Russian virus shares the greatest identity with the Thai viruses (>98%). However, 

comparatively little sequencing of CDV has been performed in the Southeast Asian region, 

and so the true geographic range of Asia-4 is currently unknown. Notably, Thailand is a 
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common tourist destination for Russian citizens, (with over 1.73 million visitors recorded 

in 2013, Tourism Authority of Thailand, 2014), which could represent a potential mode of 

introduction for exotic viral clades into the Far East. However, it should be noted that 

Russian regulations only permit then importation of dogs from countries that are free from 

diseases including rabies and tuberculosis (The Embassy of the Russian Federation to the 

United Kingdom of Great Britain and Northern Ireland 2016). As rabies and tuberculosis 

occur in both Thailand and China, as well as much of the rest of East Asia, it is unclear 

how Asia-4 clade viruses may have reached Vladivostok by legal means.  

 

The circumstances surrounding the deaths of the three new tiger cases identified in this 

study differed from those detected previously, and may suggest a need to expand the case 

definition for CDV in wild tigers. Previous cases have exhibited an unusual fearless 

demeanor, with animals behaving in a non-aggressive manner (Quigley et al. 2010, Seimon 

et al. 2013). Initially there was no reason to suspect the involvement of CDV in the deaths 

of either of PT79, or the tiger found dead in 2013 (Appendix II). Both of these tigers were 

suspected or confirmed to have died during encounters with people. In retrospect, it seems 

likely that aberrant behaviour related to CDV infection, could have contributed to the 

human encounter that led to their deaths. Unprovoked tiger attacks are also very rare in 

Russia (Miquelle et al. 2005), and so the detection of CDV in a lymph node from PT90/Pt 

2010-1, a tiger that attacked and killed a fisherman, suggests that infections could have 

implications for human safety. Expansion of the case definition, to include tigers involved 

in incidents of poaching, or human-tiger conflict, could lead to the detection of further 

cases in Russia and elsewhere. As part of this, CDV testing should be included as part of a 

routine health screen for live or dead tigers handled as part of human-tiger conflict 

incidents. These observations also suggest that the benefits of successful CDV 

management strategies may extend beyond tigers, and also have implications for human 

safety.  

 

From a conservation perspective, the detection of CDV in a tiger and a Far Eastern leopard 

in the Southwest Primorskii region is a particular cause for concern. This region supports 

the entire population of Far Eastern leopards (approximately 60 individuals), and 

approximately 16-21 tigers, that are genetically isolated from the larger population in the 

Sikhote Alin Mountains (Chapter 2, Henry et al.2009; Pikunov and Miquelle, 2003). These 

populations are of particular importance, as they represent founders for the gradual 
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recolonization of northeastern China (Hebblewhite et al. 2012, Wang et al. 2016). 

Population viability models have indicated that CDV increases the likelihood of extinction 

of tiger populations, an effect that disproportionally affects isolated areas supporting fewer 

individuals (Gilbert et al. 2014). The 2015 leopard case also represents the first report of 

CDV infection in a free-ranging leopard, and the diagnosis highlights a new threat to the 

conservation of this critically endangered subspecies.  

 

Conclusion 

Since 2003, there have been regular cases of CDV infections affecting Amur tigers 

throughout their range in the Russian Far East. The detection of CDV in a clinically 

affected Far Eastern leopard represents the first case in this subspecies, and a new threat to 

its conservation. The detection of CDV in several species of wild mesocarnivore 

(particularly sable) supports the hypothesis that they are involved in the maintenance of the 

virus, while the detection of a single domestic dog infection is less convincing. However, 

for short-lasting infections like CDV, it can be challenging to detect infected individuals, 

limiting the conclusions that can be drawn on the species contributing to CDV 

maintenance. For such transient infections, the detection of CDV neutralizing antibodies 

can provide a more complete assessment of exposure at a population level, and will be the 

focus of Chapter 5. Viral sequences from tigers and leopards clustered closely to viruses 

obtained from wild mesocarnivores, and were only distantly related to those obtained from 

domestic dogs, supporting the hypothesis that infections in these big cats are likely 

contracted from wildlife sources. Contemporary wild carnivore viruses in Primorskii 

diverged during the early 2000’s, suggesting an epizootic event at that time, and coincident 

with the first recorded case in a wild Amur tiger. Since then, CDV has become spatially 

mixed in wild mesocarnivore populations, suggesting long chains of transmission and 

providing further support to the hypothesis that the virus is being maintained in wild 

carnivore communities across large geographic scales. All wildlife viruses carried a 

tyrosine residue at position 549 on the HA glycoprotein, which has been proposed as 

favouring infection in domestic dogs which does not support the hypothesis that the 

Y549H substitution is adaptive to non-dog infections.   
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Given the prominence of wildlife in CDV epidemiology in this region, control measures 

that target domestic dogs are likely to have little effect on controlling infection or 

preventing transmission to tigers. Options for controlling infection in mesocarnivores are 

limited. Currently, all available CDV vaccines must be delivered parentally, thus achieving 

meaningful coverage in abundant and free-ranging wildlife is an impractical proposition. 

Likewise, there is no prospect of reducing contact between tigers and mesocarnivores that 

might act as sources of infection. Control strategies must therefore target the tigers 

themselves, raising the immune status of the population sufficient to withstand periodic 

transmission from the CDV reservoir.  
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Chapter 5 Patterns of canine distemper virus 
infection in susceptible carnivores in Primorskii 
Krai 

 

Abstract 

For acute short-lasting infections such as canine distemper virus (CDV), serological data 

often provide the only feasible means for assessing spatial and temporal patterns of 

infection in free-living wildlife populations. This study aimed to describe patterns of CDV 

exposure in Amur tigers (Panthera tigris altaica), and other wild and domestic carnivores 

in the Russian Far East using archived and newly collected samples. Serum samples were 

obtained from tigers and other large carnivores (from 1992-2014), small-bodied wild 

mesocarnivores (from 2005-2014), and domestic dogs (from 2012-14). Samples with 

neutralizing antibody titers ≥1:16 were considered positive. Exposure to CDV was 

widespread in tigers, mesocarnivores and dogs. No antibodies were detected in tigers 

sampled prior to 2000 (CI: 0.0-20.9%, n=19), but were detected in 35.7% of tigers sampled 

from 2000-2014 (CI: 23.7-49.7%, n=56). However, the detection of antibodies in two Far 

Eastern leopards (P. pardus orientalis) and a brown bear (Ursus arctos) in two locations in 

1993-4 indicated the presence of CDV in wild habitats prior to 2000. Seroprevalence was 

significantly higher among unvaccinated dogs in the remotely located Sikhote-Alin 

Biosphere Zapovednik (SABZ, 41.4%, CI: 32.4-50.9%, n=116), than Lazovskii (29.5%, 

CI: 22.8-37.2%, n=166), and Southwest Primorskii (15.9%, CI: 11.1-22.3%, n=182, chi-

square = 23.918, p<0.01, df = 2). Evidence of recent outbreaks (based on detection of 

antibodies in dogs less than one year old) was found in a greater proportion of settlements 

in SABZ (3/3 settlements, 100.0% CI: 30.9-100.0%,), than in Lazovskii (3/6 settlements, 

50.0%, CI: 18.8-81.2%,), and Southwest Primorskii (2/12 settlements, 16.7%, CI: 2.9-

49.1%,). Seroprevalence was higher in unvaccinated dogs with access to the forest (34.2%, 

CI: 26.8 to 42.4%, n=152), compared to those that did not (25.0%, CI: 19.4 to 31.6%, 

n=208), but this difference was not significant at the 95% confidence level (chi-squared = 

3.1922, df = 1, p = 0.074). Age stratified seroprevalence data were used to estimate the 

force of infection (0.114, ±0.019 cases per dog per year), and effective reproductive 

number (Re, between 1.39 ±0.068 and 1.48 ±0.063). Only 40.8% of dogs reported to have 

received CDV vaccines were found to have antibodies, which may indicate low 

immunogenicity of vaccines, deficiencies in vaccine administration protocols, or 
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inaccurate reporting by owners. Given that only 23.9-39.3% of dogs were reported to have 

received vaccines, population immunity at these levels would not be sufficient to control 

CDV with an Re greater than 1.11-1.19. Overall these findings suggest that CDV is 

circulating widely among wildlife in the Russian Far East, which limits options for 

controlling infection in tigers through domestic dog vaccination. Consideration may need 

to be given to vaccination of tigers themselves.  

 

Introduction 

An understanding of the factors that contribute to the maintenance of a pathogen in an 

ecosystem is key to the design of rational control strategies for managing infectious 

disease. The recent detection of canine distemper virus (CDV) in free-ranging Amur tigers 

(Panthera tigris altaica, Seimon et al. 2013), has been predicted to negatively impact 

population survival (Gilbert et al. 2014), highlighting a need to identify potential control 

strategies. Fundamentally, interventions aim to reduce the number of cases within a 

defined ‘target’ population (in this case tigers), and either curtail transmission within the 

target, or disrupt infections transmitted from other source populations (Woodroffe 1999, 

Haydon et al. 2002, Viana et al. 2014).  Selection of appropriate control measures requires 

an understanding of the relative contribution of different populations to the maintenance of 

a pathogen, or as sources of infection to the target. Identifying disease reservoirs is 

complex, and relies on multiple sources of evidence (Viana et al. 2014). Case information 

derived from molecular studies provides data on active infections, and the phylogenetic 

relationship of pathogens infecting different individuals (Chapter 4). However, for 

transient infections such as CDV, molecular studies may provide limited information on 

the patterns of exposure across populations, as the likelihood of detecting an infected 

individual is often small. The immune response of hosts that have recovered from infection 

may be measurable for many times longer than the infection itself. In the case of CDV, 

which invokes a long lasting immune response (Greene and Appel 2006), serological 

techniques that detect the presence of neutralizing antibodies can provide a more complete 

picture of pathogen exposure across affected populations. The objective of this chapter is 

to use serology to augment the results of molecular approaches described in Chapter 4, to 

describe the patterns of CDV exposure among tigers and other domestic and wild 

carnivores in the Russian Far East.  
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Consisting of just 331 to 393 adult and subadult animals (Miquelle et al. 2007), occupying 

an area of 155,000 km2 (Hebblewhite et al. 2014), it is unlikely that the size and population 

structure of the Amur tiger would be sufficient to maintain CDV infections in the long 

term. The extent of tiger-tiger contact is greatest between mothers and cubs, with periodic 

interactions between males and females of breeding age (Goodrich et al. 2010, Quigley et 

al. 2010). Breeding Amur tigers are territorial, with male breeders occupying territories 

that encompass between 1 and 5 female territories (Goodrich et al. 2010). Direct contact 

between territory holders of the same sex is limited, and particularly in the case of males 

may be violent in outcome. At independence, female cubs often inherit a portion of their 

mother’s home range, while males tend to roam more widely in search of a territory of 

their own. Relatively little is known about the movements and social interactions of non-

breeding tigers, but considering the risks inherent in violent encounters, it is likely that 

opportunities for direct contact are limited until tigers secure a territory of their own. For 

these reasons, opportunities for intra-specific transmission between tigers are relatively 

limited. At most, a breeding male might infect each of the female territory holders in his 

home range, which in turn could infect any offspring present, but there is little opportunity 

for infection to spread to neighbouring breeding networks. The possibility of indirect 

transmission is a notable caveat, particularly if CDV virions remained viable for an 

extended period in the cold of the Russian winter (Appel 1987, Ballmann Acton 2007), and 

could theoretically lead to further intra-specific spread, via urine-marked scent posts, or 

contamination by roving non-breeders. However, even if this were to occur, the low 

density of the Russian tiger population suggests that opportunities for such events may be 

limited, and most tiger-tiger transmission chains are destined to fade out.  

 

For these reasons, transmission from other species is likely to play an important part in 

CDV infections in tigers. Wildlife have been implicated as reservoirs and sources of 

infection for other populations of threatened carnivores (Craft et al. 2008, Woodroffe et al. 

2012, Viana et al. 2015), and the Russian taiga forest supports a diverse array of 

susceptible wild hosts. Some larger bodied species, such as brown bear (Ursus arctos), 

Asiatic black bear (U. thibetanus), Eurasian lynx (Lynx lynx), and the ‘Critically 

Endangered’ and range-restricted Far Eastern leopard (P. pardus orientalis) exhibit social 

structures not dissimilar to that of the tiger, occurring at low densities, with few intra-

specific contacts, that may limit opportunities for transmission. Smaller-bodied 

mesocarnivore species occur at much higher densities where direct interactions may be 

more likely. Most abundant among these are raccoon dogs (Nyctereutes procyonoides), red 
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fox (Vulpes vulpes), leopard cat (Prionailurus bengalensis), Asian badger (Meles 

leucurus), sable (Martes zibellina), and Siberian weasel (Mustela sibirica). Several of these 

species, such as Asian badgers are more social, providing greater opportunity for intra-

species transmission, as well as from other species through contact associated with shared 

resources of food and shelter (Stroganov 1969, Kowalczyk et al. 2008). In addition, the use 

of urine, faeces and anal secretions to mark food resources and territory (Henry 1977, 

Wells and Bekoff 1981, Kruuk et al. 1984) also represents a potential mode for indirect 

transmission of virus.  

 

In numerical terms, domestic dogs may be the most abundant susceptible host species for 

CDV in the RFE (Chapter 3). Studies focused on domestic dog demography and patterns 

of ownership have found features of the dog population that could both favour, and hinder 

its potential to maintain CDV (Chapter 3). Rates of dog ownership by people living in rural 

areas are very high, and local densities within human settlements are likely to far exceed 

those of any other susceptible species in the region, which could favour CDV maintenance 

(Chapter 3). However, the infrequency of dog movement between settlements, restrictions 

on roaming behaviour and the impact of vaccination may hinder CDV transmission, acting 

to slow its spread across the dog metapopulation. The analysis of samples collected from 

633 apparently healthy dogs during household surveys, and 75 sick dogs at veterinary 

clinics, led to the detection of only one CDV sequence (Chapter 4). However, due to the 

relatively short duration of CDV infections in dogs (Greene and Appel 2006), it is possible 

that the virus may be more widespread than these results suggest. Therefore, the use of 

serology to detect antibodies in unvaccinated dogs would give an indication of prior 

exposure to the virus, which could be more informative in the inference of viral 

epidemiology in this host. Furthermore, serological studies would provide insights into the 

immune status of the domestic dog population, that could be of considerable value to the 

design of vaccination programmes to reduce the impact of the virus on this host, and 

potentially also on the tigers.  

 

Direct and indirect contact between dogs and wildlife may be relatively common, 

representing a potential opportunity for CDV transmission. Ownership surveys found that 

5.8% of dogs were used for hunting, and owners reporting that 41.0% of dogs (n=2,324) 

are taken to the forest for this and other recreational purposes (Chapter 3). Anecdotally, 

owners have reported direct contact between their dogs and wild carnivores (Chapter 3), 
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and predation of dogs by tigers has been well documented in Russia (Smirnov and 

Miquelle 1999, Miller 2012). Given these direct interactions, as well as the possibility of 

indirect transmission, domestic dogs could be important hosts of CDV, and a possible 

source of infection for tigers.  

 

Any, or all of this diverse array of susceptible species could be contributing to the 

maintenance of CDV in the Russian ecosystem.  For a pathogen to persist, each infected 

individual in a population must on average give rise to one, or more secondary cases. As 

long as these conditions are met, the identity of secondary hosts, whether the same or 

different species is unimportant to viral maintenance, and frequent inter-species contact 

could give rise to very complex maintenance communities. Disentangling these host 

relationships is challenging, and may not be possible, even with very intensive sampling 

programmes, and long study periods. A more practical strategy might take a more 

qualitative approach, assessing whether exposure in the target population is occurring in 

particular localities or time periods, or the relative contributions made by different sectors 

of the maintenance community. The goal of this study is to use serological techniques to 

assess the exposure of species in Primorskii Krai that are susceptible to CDV, and use this 

to augment existing sequence data (Chapter 4) to assess patterns of exposure. An 

assessment of the likely contribution of domestic dogs to CDV maintenance, versus that of 

wild carnivores is of particularly importance to the selection of control strategies, given the 

comparative ease of increasing vaccination coverage in domestic settings.  

 

Specific objectives and hypotheses included: 

1. Through measurement of CDV neutralizing antibodies, assess the relative exposure 

of Amur tigers, and other domestic and wild carnivores to identify species that may 

contribute to CDV maintenance. While definitive conclusions on the maintenance 

of a pathogen cannot be draw solely from serological data, a maintenance 

population would be expected to exhibit a high seroprevalence, involving animals 

of all age classes, over a wide geographic area. 

2. Assess the temporal exposure of Amur tigers to identify any long term trends in the 

incidence of infection. Previously CDV exposure has been detected in six tigers 

sampled between 2000 and 2004, whereas no antibodies were detected in tigers 

sampled between 1992 and 1999 (n=19, Goodrich et al. 2012). An important 
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objective was to use additional samples and supporting data to obtain a more 

detailed account of tiger exposure over a longer time period, with particular 

attention to: 

a. Determine the status of CDV in Primorskii Krai prior to 2000. To test the 

hypothesis that CDV was absent from Primorskii Krai between 1992 and 

1999, which could explain the lack of exposure of tigers during this period. 

b. Reconstruct the exposure history of the intensively studied population of 

tigers in the Sikhote-Alin Biosphere Zapovednik (SABZ), to estimate the 

regularity of exposure, and assess evidence for tiger to tiger transmission.  

3. Assess the factors influencing the exposure of unvaccinated domestic dogs to CDV. 

In particular, test the hypothesis that seroprevalence, and frequency of outbreaks 

would be greater in Southwest Primorskii than in Lazovskii and SABZ, where dog 

numbers and density were progressively lower. 

4. Assess the effectiveness of CDV vaccination of domestic dogs. Vaccination 

represents the main approach to controlling CDV in domestic dog populations. The 

capacity for vaccination programmes to invoke a protective immunity is therefore 

central to their success. A key study objective was therefore to measure the 

prevalence of protective antibody titres in vaccinated dogs. 

5. Estimate force of infection and effective reproductive number (Re) of CDV 

infection in domestic dogs. Serological data can be used to estimate the mean force 

of infection (λ, the rate at which susceptible individuals acquire an infectious 

disease), and the effective reproductive number (Re, the mean number of secondary 

cases arising from each infectious animal in a population that is partially immune, 

e.g. through use of vaccination). By fitting a catalytic model, to observed 

serological data stratified by host age, and incorporating plausible rates of CDV 

mortality, it is possible to obtain mean estimates for λ, and Re for a population 

(Vynnycky and White 2010). Assessments of Re are valuable in assessing desired 

levels of vaccination coverage in programmes to control infection, and for 

informing risk models to estimate the transmission of CDV from dogs to tigers 

(Gilbert et al. 2014). 



Chapter 5 Patterns of CDV infection  159 

Methods 

Serum samples were acquired from several sources, focusing on the three study areas 

described in Chapter 3: SABZ (with low dog density), Lazovskii Zapovednik (with 

intermediate dog density) and Southwest Primorskii (with high dog density, Figure 5.1). 

Samples from large carnivores included some collected outside these locations, and were 

defined as originating in ‘non-study areas’.  

 

Samples from tigers and other large-bodied wild carnivores were obtained from the 

archives of the Wildlife Conservation Society, Bronx, New York, and were collected from 

wild carnivores captured in Primorskii Krai (124 animals), neighbouring Khabarovskii 

Krai (six animals) and Amurskaya Oblast (one animal) between November 1992 and 

November 2014. These included samples from 40 tigers described previously by Goodrich 

et al. (2012). Animals were captured either for research purposes (e.g. the placement of 

telemetry collars), or in response to human conflict situations (such as encroachment on 

human settlements, or following predation of domestic animals). Research animals were 

immobilized using either a combination of ketamine hydrochloride (10 mg/kg for tigers) 

and xylazine hydrochloride (0.8 mg/kg for tigers), or ‘Zoletil’® Virbac (tiletamine and 

zolazepam, 4-8 mg/kg depending on species), delivered using an injectable dart from a 

helicopter (research animals), or on the ground to animals captured using Aldrich foot 

snares (research and conflict animals) (Goodrich et al. 2001). A proportion of the research 

animals were followed throughout their lives, and so age was known with a high degree of 

certainty. For others, age was estimated based on tooth wear and gum recession. All 

animals were considered clinically healthy at the time of capture, with the exception of one 

tigress (PT61/Pt 2004), infected with CDV (described previously in Chapter 4 and in 

Quigley et al. 2010, and Seimon et al. 2013). Blood was collected through venipuncture of 

femoral veins, and serum harvested on the day of capture, through centrifugation of clotted 

blood at 2,500 rpm for 10 minutes. Serum samples were stored at -20 Celsius for up to 

eight years prior to export, after which they were transferred to -80 Celsius, and shipped 

using dry ice	for analysis. 

 

Serum samples from small-bodied mesocarnivores were obtained from animals captured 

specifically for this project, and from archived material. Captures took place in Lazovskii 

Zapovednik (during May 2013, and October/November 2013), and SABZ (April/May 
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Figure 5.1. Map illustrating the three primary study areas (white labels): Sikhote-Alin 
Biosphere Zapovednik (SABZ), Lazovskii Zapovednik (Lazovskii) and Southwest Primorskii 
(Southwest). Protected areas are indicated in dark green, and 25 km buffers in orange. The 
three districts (Rayons) where mesocarnivore tissue specimens were collected from fur-
trappers (Chapter 4) are indicated in olive (Lazovskii Rayon, Terneiskii Rayon and 
Pozharskii Rayon). 
 

2014). Animals were captured using folding cage traps (manufactured by Tomahawk, 

Hazelhurst, WI, and Havahart, Lititz, PA). Between 26 and 50 folding cage traps were 

utilized in Lazovskii, and 21 in SABZ. Traps were set along riparian and coastal forests 

where camera trap footage had indicated the presence of wild carnivores, and were 

checked once daily. Captured animals were immobilized using ‘Zoletil’® Virbac (3-5 

mg/kg, depending on species), and blood was collected from the cephalic or jugular veins. 

Animals were examined for signs of clinical disease, and age was estimated based on tooth 

wear and gum recession. Serum was separated by centrifugation of clotted blood at 2,500 

rpm for 10 minutes, and was then transferred to liquid nitrogen for storage in the field. 
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Samples were maintained on -23 Celsius ice packs during export, and were transferred to -

80 Celsius freezers prior to analysis. 

 

Archived material included samples collected in Southwest Primorskii during 2007-8 (by 

the Institute of Biology and Soil Sciences of the Far Eastern Branch of the Russian 

Academy of Sciences, Vladivostok; and the National Institutes of Health/National Cancer 

Institute, Frederick, Maryland, IBSS/NCI), Lazovskii Zapovednik during 2008-9 (by the 

Zoological Society of London, ZSL), and from SABZ between 2005 and 2011 (by the 

Wildlife Conservation Society). Archived samples had been collected from mesocarnivores 

using cage traps (IBSS/NCI, ZSL and WCS), and padded leg-hold traps (IBSS/NCI only, 

Meek et al. 1995) deployed in a similar manner to those captured specifically for the 

purposes of this project, and were therefore considered comparable.  

 

Samples were collected from dogs during visits made to 19 communities in the Southwest 

Primorskii and SABZ study areas during June and July 2012, and in 26 settlements in all 

three study areas during household questionnaire surveys between November 2012 and 

June 2014 (described in detail in Chapter 3). Owners were asked for details of all 

individual dogs in their household, including age, time since their last distemper 

vaccination, and whether dogs were taken to visit forested areas. Once questionnaires were 

completed, householders were asked for their consent to allow the collection of biological 

samples from their dogs. Where informed written consent was given, dogs were manually 

restrained, and blood was drawn from the cephalic vein. Serum was collected and stored in 

the same manner as samples from mesocarnivores. Target sample sizes for each study area 

were calculated using the ‘pwr’ package in R (Champely 2015). Sample sizes of 170 

unvaccinated dogs in each area were selected using a two-tailed test to detect differences in 

seroprevalence of 15%, with an expected seroprevalence of 50% (which maximizes the 

sample size required to meet the desired difference, power and significance levels), at a 

power of 80% and a 95% significance level.  

 

Antibody titres were measured using virus neutralization at the Washington Animal 

Disease Diagnostic Laboratory (WADDL) at Washington State University (tigers and other 

large-bodied wild carnivores), and by the Veterinary Diagnostic Services at the University 

of Glasgow (mesocarnivores and domestic dogs). The methods used in both laboratories 
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were based on Appel and Robson (1973). Briefly, in Glasgow, a 1:4 starting dilution was 

prepared consisting of 30 µl of serum and 90 µl Dulbecco’s modified Eagle's medium with 

5% fetal calf serum (DMEM 5%). Four fold serial dilutions of each serum sample were 

prepared in a 96 well flat bottom plate from 1:16 to 1:16,384, consisting of 25 µl dilute 

serum and 75 µl diluent DMEM 5% in each well. Titration series were prepared four times, 

such that each sample was tested in quadruplicate. The Bissell strain2 of CDV was then 

added to each serum dilution (100 TCID50/75 µl) (Bussell and Karzon 1965). A serum 

control was prepared using a positive serum sample of known titre, and was titrated in the 

same manner as test sera. A virus control was prepared, with 75 µl of virus placed in the 

first well, and titrating two-fold dilutions thereafter. Dilutions were incubated in the dark 

for 1 hr at room temperature, followed by 1 hr at 4 Celsius. African green monkey derived 

Vero cells were added to each well in 50 µl volumes (2x105 cells/ml), and plates were 

incubated at 37 Celsius in a 5% CO2 humidified incubator for 72 hr. The four replicate 

dilutions were then examined microscopically for cytopathic effect, with the endpoint of 

each determined as the highest dilution at which cytopathy was inhibited. Final antibody 

titres were calculated using the Spearman-Karber method (Hamilton et al. 1977).  

 

Minor differences in the virus neutralization technique performed at WADDL included the 

preparation of single titrations of serum at two-fold dilutions from 1:4 to 1:512, and the use 

of the Onderstepoort strain of CDV at 1,000 TCID50. Cytotoxic serum samples were 

identified by performing additional titrations without virus, and assessed for cytopathicity.  

 

Serum samples with antibody titres equal to, or exceeding a cutoff titre of 1:16 were 

considered to be positive to reduce numbers of false positives due to non-specific 

neutralization at lower titres. Samples with a measurable titre lower than 1:16 were 

therefore considered to be inconclusive. While some dogs with vaccine-derived antibody 

titres as low as 1:8 may survive experimental challenge (Jensen et al. 2015), a higher titre 

of 1:64 was used as a more reliable indicator of presumed protective immunity (following 

the recommendations of Bohm et al. 2004, and Jensen et al. 2015). Only serum 

neutralization titres from animals greater than four months old were included in data 

analyses, to exclude possible maternally derived antibodies. Prevalence was considered to 

be the number of animals testing positive, divided by the total number of animals tested. 

The R package “prevalence” (Devleesschauwer, Brecht Torgerson et al. 2014) was used to 
                                                
2 A vero cell adapted clone of the Onderstepoort strain of CDV 
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calculate 95% binomial confidence intervals for all seroprevalence estimates. Chi-square 

goodness to fit tests, and Fisher exact tests were used to measure differences in 

seroprevalence in different study areas using R.  

 

Before constructing multivariable models, subsets of cleaned data were prepared from the 

raw data, which excluded outcome variable entries where information on the appropriate 

explanatory variables was incomplete. Data were tabulated for cleaned and raw data 

subsets, to identify any changes in the distribution of observations for each explanatory 

variable that may have occurred during the cleaning process (Appendices IXX, and XX). 

No significant differences were found between raw and cleaned sets of data for either 

domestic dogs or tigers based on chi-square contingency tests.  

 

Multivariate generalized binary logistic regression models were prepared to identify 

explanatory variables that were significantly associated with the outcome variable CDV 

exposure (0 or 1) in unvaccinated domestic dogs, and in tigers. Explanatory variables used 

for dog models included age, gender, whether owners reported taking the dog to the forest, 

study area, community type, residence type, number of people (adults and children within 

residence), presence of children, cats, poultry, and livestock, whether the dog was a guard, 

a hunting dog, or a companion animal, and origin. Explanatory variables used for tiger 

models included age, gender, study area, human population density, and whether tigers 

were research or conflict animals. To estimate human population density, the locations of 

sampled tigers were plotted within a geographical information system (QGIS 2.6.0-

Brighton), over a 10 km2 tessellated polygon prepared using the national census statistics 

2010 (Russian Federal State Statistics Service. 2011). Tiles were classified based on 

human population density as ‘negligible’ (0 people per km2), ‘low’ (>0 to 1.0 people per 

km2), ‘moderate’ (>1.0 to 10), or ‘high’ (>10 people per km2). Further details of 

explanatory variable categories for domestic dogs and tigers are provided in Tables 5.1 and 

5.2 respectively. Models were prepared using a forward selection process, and AIC values 

were used to assess model quality. The final model was identified when addition of 

explanatory variables did not reduce AIC values further. Odds ratios were estimated as a 

measure of association between explanatory and outcome variables expressed within 95% 

confidence limits. 
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Table 5.1. Explanatory variables used to assess the outcome variable exposure in 
unvaccinated dogs using multivariate generalized binary logistic regression models. 

Southwest*
Lazovskii
SABZ
Village*
Town
Large town
Apartment*
Cottage

People in house Numeric Number of people
No*
Yes
No*
Yes
No*
Yes
No*
Yes

Age Numeric Age in months
Female*
Male
No*
Yes
Non-guard*
Guard
Non-hunter*
Hunter
Non-companion*
Companion
Local*
Non-local

Community Type Categorical

Explanatory 
variable

Variable 
type Levels

Study Area Categorical

Cat owner Categorical

Children in house Categorical

Residence type Categorical

Gender Categorical

Livestock owner Categorical

Poultry owner Categorical

Source Categorical

Forest visits Categorical

Companion dog Categorical

Hunting dog Categorical

Guard dog Categorical

 
* Indicates reference level for categorical variables.  

Table 5.2. Explanatory variables used to assess the outcome variable exposure in tigers 
using multivariate generalized binary logistic regression models.

  
* Indicates reference level for categorical variables. 
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The force of infection (λ), or number of new infections per unit time was estimated by 

fitting a catalytic model to the seroprevalence data for unvaccinated dogs, stratified by 

their age (a) in years. Assuming that CDV is endemic in the dog population, the number of 

susceptible dogs (S) declines over time according to the formula: 

!"
!" = −!" 

 

This equation can be integrated to give the formula: 

! = !!!!!" 

Therefore, the proportion of dogs that remain susceptible to CDV by age a is given by: 

!! ! = !!!" 

The number of seropositive dogs npos in each age category a represents the number of dogs 

surviving infection, and can be used to estimate the number of infected animals ninf for a 

given CDV mortality ratio M (defined as the proportion of infected dogs that die):    

!!"# =
!!"#

(1−!) 
 

If the number of seronegative dogs is nneg then the contribution of each age category to the 

model likelihood is given by: 

!! ! !!"#  (1− !! ! )!!"# 
 

 
Corresponding to a log likelihood of: 
 

log (!! ! !!"#)+ log( 1− !! !
!!"#) 

 
= !!"# log !! ! +  !!"# log (1− !! ! ) 

 
 

The sum of the log likelihood values for each age category then gives the log likelihood for 

the catalytic model. 
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A saturated model was then constructed using the age stratified serological data only, with 

the likelihood contribution of each age category a given by: 

!!"# log !!"# +  !!"# log (1− !!"#) 
 

The sum of the log likelihood values for each age category then gives the log likelihood for 

the saturated model. The deviance between the two models is equal to -2 multiplied by the 

difference between the log likelihoods of the catalytic model and the saturated model. 

Alternate catalytic and saturated models were prepared using R based on a low mortality 

rate of 0.2, and a high mortality rate of 0.4 (Greene and Appel 2006). Models were run for 

a range of values of λ, with the best fit value minimizing the deviance between the 

catalytic and saturated models. Estimates of 95% confidence intervals for λ were obtained 

based on the values that corresponded to the optimal deviance minus 3.84 (χ2 value for one 

degree of freedom at the p = 0.05 level). 

 

Best fit estimates of λ were then used to estimate Re using the estimated lifespan (L, mean 

age at death) of dogs in the population of 3.39 years (estimated in Chapter 3), using the 

formula for Re under the assumption of an exponential age distributions: (Vynnycky and 

White 2010). 

!! = 1+  !" 

Assuming that CDV infections did not occur seasonally, mean prevalence P was estimated 

based on λ values for low and high mortality assuming a mean period of infection I of 21 

days.  

! = ! !
365 

 

Results 

Serum samples were tested from a total of 233 individual wild carnivores of 12 species, 

including 67 tigers (Table 5.3, Appendices XXI and XXII). Of these, CDV neutralizing 

antibodies were detected in eight species, although sample size was limited to four or 

fewer individuals for the species from which antibodies were not detected (for reference, 
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29 animals would need to be sampled in order to have a 95% probability of detecting at 

least one positive individual in a population of infinite size, with a true seroprevalence of 

10%, based on the hypergeometric distribution provided by Cannon and Roe 1982). 

Seroprevalence was greatest in raccoon dogs (34.3%, CI: 19.7-53.3%, n=35), followed by 

tigers (29.9%, CI: 19.6-42.4%, n=67). Of the 20 seropositive tigers, 16 were found to have 

presumed protective titres (Figure 5.2A), whereas presumed protective titres were only 

found in five of 16 mesocarnivores (Figure 5.2B). Inconclusive titres were particularly 

evident among Asian badgers, with five samples registering an antibody titre of 1:11.  Had 

a cutoff of 1:11 been used (rather than 1:16), seroprevalence among badgers would have 

been considerably higher, at 16.3% (CI: 7.3-31.3%, n=43). The impact on seroprevalence 

estimates would have been much lower in other wildlife species, with only one, or two 

additional animals being considered seropositive had a lower threshold been used 

(Appendix XXV). Serum samples from three tigers that were later found to be infected 

with CDV at the time of sampling (PT79, PT56 and PT613) were all found to have a titre of 

1:128. Both PT56 and PT61 exhibited neurological signs at the time of sampling, and were 

subsequently euthanized or died from their infections respectively, while PT79 survived 

for at least four months before disappearing (Chapter 4). The basic generalized logistic 

regression model was found to be a better predictor of exposure in tigers than any of those 

that included explanatory variables (Appendix XXVI). 

Table 5.3. Results of virus neutralization analyses against canine distemper virus (CDV) for 
serum samples collected from wild carnivores in the Russian Far East between 1992 and 
2014. Neutralizing antibody titres of 1:16 or higher were considered positive. 
Seroprevalence is given as the number of positive samples expressed as a percentage of 
sample size, with lower and upper 95% binomial confidence intervals (CI).  

Species Positive Sample 
size

Seroprev. 
(%)

Lower CI 
(%)

Upper CI 
(%)

Amur tiger * 20 67 29.9 19.6 42.4
Far Eastern leopard * 2 10 20.0 3.5 55.8
Eurasian lynx * 1 7 14.3 0.8 58.0
Leopard cat 2 16 12.5 2.2 39.6
Asiatic black bear * 1 25 4.0 0.2 22.3
Brown bear * 2 20 10.0 1.8 33.1
Raccoon dog † 12 35 34.3 19.7 52.3
Red fox † 0 4 0.0 0.0 60.4
Sable † 0 2 0.0 0.0 80.2
Siberian weasel † 0 2 0.0 0.0 80.2
American mink † 0 2 0.0 0.0 80.2
Asian badger † 2 43 4.7 0.8 17.1  

* Samples tested in Washington State University against CDV Onderstepoort strain. † Samples 
tested in the University of Glasgow using CDV Bussell strain. 

                                                
3 PT61 is referred to as Pt 2004 in Seimon et al. 2013. 
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Figure 5.2. Distribution of canine distemper virus (CDV) neutralizing antibody titres in A) 
large carnivores measured in Washington State University using CDV Onderstepoort strain, 
and B) mesocarnivores measured in the University of Glasgow using CDV Bussell strain. 
 

Antibodies to CDV were detected in wild carnivores from nine locations across Primorskii 

Krai and southern Khabarovskii Krai (Figure 5.3), including tigers in eight locations. 

Seropositive mesocarnivores were found in all three primary study areas, and no 
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significant difference was found in the seroprevalence recorded at the three sites using 

Fisher’s exact test (p=0.465). 

 

Only three wild carnivores sampled prior to the year 2000 were found to have antibodies to 

CDV (Table 5.4, Figures 5.4 and 5.5). These included two female leopards sampled in 

Southwest Primorskii during June 1993 and August 1994 (with titres of 1:64 and 1:256 

respectively, and estimated to be three and four years old), and a male brown bear captured 

in SABZ during July 1993 (with a tire of 1:32, and estimated to be nine years old). None of 

the 19 tigers sampled prior to 2000 were found to have antibodies to CDV. The first cases 

of exposure in tigers were detected in a six year old male sampled in SABZ during October 

2000, and a two year old male captured during a conflict mitigation incident in December 

2000 in the district of Krasnoarmeyskii (N46.45°, E135.84°). Antibodies to CDV were 

detected more frequently in animals sampled after 2000, particularly in tigers, with 20 

seropositive individuals detected between 2000 and 2014 (n=56).  

 

Table 5.4. Summary of virus neutralization results against canine distemper virus (CDV) 
from large carnivores sampled in the Russian Far East from 1992 to 1999, and from 2000 to 
2011. For animals sampled on more than one occasion, only the most recent sample in each 
period is used. Samples were analysed by Washington State University using the CDV 
Onderstepoort strain. 

Species +ve n % 95% CI +ve n % 95% CI
Amur tiger 0 19 0.0 0 - 20.9 20 56 35.7 23.7 - 49.7
Far Eastern leopard 2 6 33.3 6.0 - 75.9 0 4 0.0 0.0 - 60.4
Eurasian lynx 0 0 - - 1 6 16.7 0.9 - 63.5
Asiatic black bear 0 9 0.0 0.0 - 37.1 1 17 5.9 0.3 - 30.8
Brown bear 1 13 7.7 0.4 - 37.9 1 8 12.5 0.7 - 53.3
Total 3 47 6.4 1.7	-	18.6 23 91 25.3 17.0 - 35.7

Animals sampled in 2000 and 
later

Animals sampled before 2000

 

 

Survey effort was most consistent and intensive in SABZ between 1992 and 2011, 

providing some indication of the temporal distribution of CDV exposure among large 

carnivores in the protected area (Figure 5.5B). The seropositive nine year old brown bear 

(UA007) sampled during July 1993 confirms the presence of CDV during the late 1980s or  
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Figure 5.3. Locations in the Russian Far East from which serum was collected from Amur 
tigers, Far Eastern leopard, Eurasian lynx, brown bear, Asiatic black bear and 
mesocarnivore species between 1992 and 2014. Positive samples with canine distemper 
virus (CDV) neutralising antibodies (red) and negative samples (blue) from the same 
location are indicated as pie charts that are scaled based on sample size. Confirmed cases 
of CDV affecting tigers and leopards are indicated by red squares. 
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Figure 5.4. Temporal distribution of serum samples collected from Amur tigers in the 
Russian Far East between 1992 and 2014. Samples found to be negative for neutralizing 
antibodies to canine distemper virus (below a cut-off titre of 1:16) are represented in blue, 
and positive samples in red. Background shading indicates sampling periods before 2000 
(yellow) and following 2000 (orange). 
 

early 1990s. However, no further exposure was detected in any large carnivores in SABZ 

sampled between 1992 and 1999 (including 17 tigers, Appendix XX). Table 5.5 

summarizes the serology status of 32 tigers sampled in SABZ between 2000 and 2011. 

Based on the age of tigers at the time of sampling, it is evident that CDV exposure 

occurred during 1996-2000 (PT40), 2001-2004 (PT63), 2006 (siblings PT79 and PT81), 

2007-8 (siblings PT88 and PT89) and 2010 (PT56). The detection of antibodies in several 

older tigers could have occurred during a longer time period, and are therefore less 

informative. Notably, PT56, the mother of PT88 and PT89 appears to have been exposed 

later than her two dependent cubs (that were still in contact with her at the time of their 

sampling in May 2008), as she was infected at the time of her death in June 20104.  

                                                
4 The longest period of CDV infection recorded in a captive tiger was 16 months (Blythe et al. 

1983), but this animal exhibited severe clinical disease that would not have been compatible with 
survival in the wild. 
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Figure 5.5. Temporal representation of canine distemper virus serology data for large 
carnivores sampled in A) the whole Russian Far East, and B) Sikhote-Alin Biosphere 
Zapovednik (SABZ) only. Each horizontal bar represents an individual animal, extending 
from birthdate (or the date of last sample collection), to the date on which sample was 
collected. Solid bars indicate tigers, dashed bars indicate other large carnivore species. 
Samples with a titre of 1:16 or greater are coloured red, negative samples are coloured blue 
(tigers) or grey (other species). Vertical green dashed lines indicate confirmed clinical 
cases: a) PT61 –Khabarovskii Krai, 2003, b) PT79 – SABZ, 2006, c) PT90 – SABZ, 2010, d) 
PT56 – SABZ, 2010, e) wolf – SABZ, 2013, f) tiger, Khasanskii, 2013, g) leopard – Khasanskii, 
2015. 
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Table 5.5. A summary of serology results for all tigers sampled in Sikhote-Alin Biosphere 
Zapovednik from 2000-2011. Seropositive samples are highlighted in red. 

Animal ID
Collection 
date

Age 
(months) Titre Notes

PT1 17-Mar-02 132 <8*
PT20 26-Feb-00 168 <4
PT35 20-Mar-02 108 <16*
PT35 09-Apr-06 156 <16*
PT37 20-Nov-03 144 <4
PT40 15-Oct-00 72 128 Exposed during 1996-2000
PT41 22-Nov-00 24 <4
PT47 18-Feb-01 24 <4
PT49 22-May-01 36 <8*
PT49 05-Jun-05 90 <4
PT50 01-Jun-01 90 <4
PT54 06-Oct-02 4 <4
PT55 24-Oct-02 15 <4
PT55 07-Oct-07 72 128 Exposed during 2002-7
PT56 24-Oct-02 16 <8*
PT56 28-Oct-05 52 <4
PT56 24-Mar-10 108 128 Confirmed with CDV June 2010
PT57 07-Nov-02 12 <4
PT58 15-Dec-02 18 <4
PT60 15-May-03 54 <4
PT63 30-Apr-04 36 64 Exposed during 2001-04
PT64 24-May-04 12 <4
PT67 16-Aug-04 1 <16*
PT69 17-Sep-04 15 <8*
PT74 11-Oct-05 1 <4
PT75 28-Oct-05 15 <4
PT79 13-Oct-06 13 128 Infected at time of sampling
PT81 13-Oct-06 13 256 Likely infected at time of sampling
PT85 14-Oct-07 96 32 Exposed during 1999-2007
PT88 03-May-08 12 32 Exposed during 2007-8
PT89 23-May-08 12 128 Exposed during 2007-8
PT94 04-Jun-09 60 64 Exposed during 2004-9
PT95 01-Nov-09 60 <16*
PT96 07-Nov-09 24 <16*
PT97 07-Nov-09 24 <16*
PT100 05-Nov-10 48 <16*
PT114 21-Oct-11 30 256 Exposed during 2010-11

* Denotes samples where cytotoxicity prevented an assessment of neutralization at low titres.  
Figure denotes the lowest titre well that could be assessed. 

 

Outside SABZ, seropositive tiger cubs were detected in two locations, providing further 

information on the time and location of infections. During November 2012, three six 

month old cubs that were assumed to have been orphaned, were captured near the village 

of Andreevka, Yakovlevskii district (N44.56°, E133.52°). Samples from two of these three 

cubs were found to be seropositive (Borya and Kuzya, Appendix XX). During August 

2013, two female cubs were captured near the village of Svetlogorie, Pozharskii district 
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(N46.86°, E134.46°). Although both cubs were assumed to have been orphaned, as neither 

was old enough to be independent, it is possible that they were not siblings, as one was 

estimated to be 11 months old at capture, and the other approximately nine months old. 

The younger of the two was found to be seropositive (PT125), while the other was 

seronegative (PT124, Appendix XX).  

 

The period from which mesocarnivore samples were available was less extensive than for 

large carnivore species (Figure 5.6). Samples from Southwest Primorskii were primarily 

collected during 2007 and 2008, of which eight of 46 were found to be seropositive. 

Samples were collected during two periods in Lazovskii. During 2008 and 2009, 13 

mesocarnivores were sampled, of which all were negative (CI: 0.0-28.3%). However, 

during 2013, five of 31 animals were found to be seropositive (16.1%, CI: 6.1-34.5%). Of 

ten samples collected in SABZ during 2014, three were positive (33.3%, CI: 8.1-64.6%), 

while single samples collected during 2005 and 2011 were both negative. Full details of 

the species sampled at each location are provided in Appendix XXI. 

 

Figure 5.6. Temporal representation of canine distemper virus serology data for 
mesocarnivores sampled between 2006 and 2014. Each horizontal bar represents an 
individual animal, extending from birthdate to the date on which sample was collected. 
Samples with a titre of 1:16 or greater are coloured red, negative samples are coloured blue. 
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Samples were collected from 616 domestic dogs, of which owners reported that 464 had 

not been vaccinated against CDV at any time in their lives (Appendices XXIII and XXIV). 

A total of 182 dogs were sampled in Southwest Primorskii (in 28 settlements), 166 in 

Lazovskii (in seven settlements), and 113 in SABZ (in three settlements). Seroprevalence 

was lowest in Southwest Primorskii, where dog densities were highest, and were highest in 

SABZ where dog densities were lowest (Table 5.6). These differences were found to be 

significant (chi-square = 23.918, p<0.01, df = 2). Overall 27.2% of unvaccinated dogs were 

found to be seropositive (CI: 23.2 - 31.5%), and 8.6% (CI: 6.3 - 11.6%) had titres 

considered protective.  

 

Table 5.6. Results of virus neutralization analyses against canine distemper virus (CDV) for 
serum samples collected from unvaccinated dogs in the study sites Southwest Primorskii, 
Lazovskii and Sikhote-Alin Biosphere Zapovednik (SABZ). Neutralizing antibody titres of 
1:16 or higher were considered positive. Seroprevalence is given as the number of positive 
samples expressed as a percentage of sample size, with lower and upper 95% binomial 
confidence intervals (CI). Samples were tested in the University of Glasgow using CDV 
Bussell strain. 

Study area Positive Sample 
size

Seroprev. 
(%)

Lower CI 
(%)

Upper CI 
(%)

Southwest Primorye 29 182 15.9 11.1 22.3
Lazovskii 49 166 29.5 22.8 37.2
SABZ 48 116 41.4 32.4 50.9  

 

The detection of antibodies in young dogs that exceed the age at which maternal antibodies 

have waned (approximately four months), provide a valuable indicator of recent outbreaks.  

Of the young dogs between the ages of four and twelve months, 20.2% (CI: 13.6 - 28.7%) 

were found to have antibodies of 1:16 or higher. Antibodies were detected in young 

unvaccinated dogs in all three study areas, indicative of widespread infections (Figure 5.7). 

Young dogs were sampled in 21 settlements, of which 8 showed evidence of recent 

exposure. However, low sample sizes (fewer than five dogs) may have reduced 

detectability in 13 of the settlements where no evidence of recent exposure was detected. 

Recent exposure were found in fewer settlements in Southwest Primorskii (2/12), than 

Lazovskii (3/6), with recent exposure found in all three settlements sampled in SABZ. 

Furthermore, the village of Ternei in SABZ was sampled during both 2012 and 2014, and 

evidence of recent exposure was found during both visits.  
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Overall the seroprevalence of dogs that visited the forest was 34.2% (CI: 26.8 to 42.4%, 

n=152), compared to 25.0% (CI: 19.4 to 31.6%, n=208) in dogs that did not. This 

difference was not found to be significant at the 95% confidence level (chi-squared = 

3.1922, df = 1, p = 0.074). Similarly, forest visits approached significance as a predictor of 

exposure in the univariate generalized binary logistic regression model (odds ratio 1.64, 

CI: 0.95-2.84, p= 0.07). The univariate model for ‘community size’ failed to converge, and 

so the categories ‘town’ and ‘large town’ were combined (as the latter were represented by 

only six dogs). The final multivariate model (Appendix XXVII) indicated that exposure 

was greater for unvaccinated dogs from SABZ (odds ratio 8.73, CI: 2.84-32.63, p < 0.01), 

and Lazovskii (odds ratio 3.76, CI: 1.44-10.51, p< 0.01) in comparison to Southwest 

Primorskii, and increased with the age (in months) of dogs sampled (odds ratio 1.01, CI: 

1.00-1.02, p< 0.01). 

Figure 5.7. Maps illustrating settlements in 
the study areas A) Southwest Primorskii, 
B) Lazovskii and C) Sikhote-Alin Biosphere 
Zapovednik where serum samples were 
collected from unvaccinated dogs less 
than one year old, indicating the location of 
recent outbreaks. Positive samples with 
canine distemper virus (CDV) neutralizing 
antibodies (red) and negative samples 
(blue) from the same location are indicated 
as pie charts that are scaled based on 
sample size. 
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A total of 152 samples were collected from dogs whose owners reported that they had been 

vaccinated, of which only 62 (40.8%, CI:30.0–49.1%) were found to be seropositive, and 

only 32 (21.1%, CI:15.0–28.6%) were considered protective.  

 

Estimates of the force of infection λ were 0.114 (±0.019) cases per dog per year with a low 

CVD mortality of 0.2, versus 0.142 (±0.020) cases per dog per year with a high CDV 

mortality of 0.4. Assuming a mean infectious period of 21 days (Greene and Appel 2006), 

this equates to a mean prevalence of 0.54% to 0.68%. Estimates for Re were 1.39 (±0.068) 

with a low mortality of 0.2, and 1.48 (±0.063) with a high mortality of 0.4.  

 

Discussion 

The findings of this study confirm that CDV exposure is widespread in Amur tigers, with 

infections occurring across much of their current range in the Russian Far East. Although 

no antibodies were detected in tigers until after 2000, seropositive cases in other large 

carnivores in two sites during the early 1990s confirm that CDV has been present in the 

region for some time, and is a basis for rejecting the hypothesis that a regional absence of 

CDV could explain the lack of antibodies in tigers sampled prior to 2000. However, the 

exposure of young tigers in the intensively monitored population in SABZ indicate that 

infections have occurred regularly since 2000, with at least five discrete exposure events 

occurring in the years since. Although clinically affected tigers have primarily been 

detected close to human population centers, along transport corridors, and in well-

monitored SABZ, additional cases may be going undetected in remote areas, where human 

activity is limited. For instance, CDV antibodies were detected in one tiger (PT43), in 

sparsely populated Krasnoarmeyskii district in northern Primorskii (Figure 5.3 Appendix 

XX), where detection of mortality would be unlikely. While the case fatality ratio of 

infected tigers is unknown, levels of infection, and mortality are likely to be greater than 

has been indicated by the handful of confirmed clinical cases, augmenting calls to consider 

management interventions.  

 

The high seroprevalence found in tigers sampled after 2000 suggests that a proportion of 

tigers are surviving CDV infection. Of the 20 seropositive tigers, active CDV infections 

were only confirmed in three tigresses (PT61, PT79 and PT56, Chapters 4 and 5, Table 5.5 

and Appendix II), with the remaining animals either representing undiagnosed cases, or 
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(more likely) those that had survived prior infection. While this indicates that mortality of 

CDV infected tigers falls below 100%, the actual mortality rate is open to speculation, as 

tigers which die from infection may be under-represented in the sample set. However, the 

scale of this unseen mortality cannot be determined from the examination of 

seroprevalence data alone. Antibodies to CDV remain detectable for extended periods, and 

may last for the remainder of the animal’s life (Greene and Appel 2006). Therefore, a high 

seroprevalence could be achieved despite a high mortality rate, if the rate of exposure were 

also high. Conversely high seroprevalence could also occur in long-lived animals like 

tigers where exposures were infrequent, but mortality rate was very low. The implications 

that these mortality rate uncertainties may have on population extinction have been 

examined using a population viability model (Gilbert et al. 2014), with the outcome being 

relatively insensitive to changes in mortality rate. For instance, according to one infection 

scenario, in which mortality rate was increased from 30% to 50%, while all other factors 

remained constant, resulted in a comparatively minor increase in fifty year extinction 

probability of 34.0% to 38.5%.  

 

The intensively monitored population of tigers in SABZ provides an opportunity to 

examine the evidence for tiger-to-tiger transmission. The availability of samples from three 

female tigers, occupying neighbouring territories in SABZ represent the best example of 

this (Table 5.5). The older female, PT35 held a territory bordering Lake Blagodatnoye 

from approximately 1995, and gave birth to a daughter, PT56 in 2001 to which she 

succeeded a portion of her territory (Figure 5.8). A neighbouring tigress, PT55 was born in 

a territory immediately to the northwest in 2001, which she occupied until 2009.  Serum 

collected from PT35 in 1999, 2002 and April 2006, was negative for CDV antibodies on 

each occasion. However, in October 2006 samples collected from two of her 13 month old 

cubs, PT79 and PT81 were both seropositive (no samples were collected from the third 

cub, PT80). This finding, together with the detection of a CDV sequence in a blood clot 

collected from PT79 (Chapter 4), confirms exposure (at least of two of the cubs) during 

2006. During 2007, PT35 disappeared (although at approximately 14 years of age, this may 

have been due to senescence), and her three cubs were thought to have been killed by 

poachers (with last records of PT79 in February 2007, PT80 in November 2007 and PT81 

in February 2008). In the neighbouring territory, two 12 month old cubs belonging to PT56 

(PT88 and PT89) were both found to have antibodies to CDV in May 2008. Fewer samples 

are available from the third tigress, PT55 but it is evident that she was exposed to CDV 

sometime between 2002 and October 2007 (Table 5.5).  
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Clearly these results indicate a period during which tigers were exposed to CDV in SABZ 

between 2006 and 2008. However, it is also worth noting that several of the tigers in this 

area do not appear to have been exposed at that time. These include PT90, the territorial 

male tiger whose range overlapped that of PT35, PT55 and PT56. Although no samples 

were available from this tiger, it is unlikely that he was infected earlier than 2009, as CDV 

sequences were detected in his tissues at the time of his death on 1 January 2010, when he 

was shot after killing a fisherman (Chapter 4, and Appendix I). Likewise, PT56 was found 

to be seronegative in 2002 and 2005, but was seropositive in March 2010, and infection 

was confirmed at the time of her death on 1 June 2010 (Chapters 4, Appendix I and 

Seimon et al. 2013). Radiotelemetry locations indicate close proximity between PT90 and 

PT56 during December 2009 (D. G. Miquelle pers. comm. 2012), and with her litter born 

during May 2010, it is likely that PT56 was infected by PT90 during a mating encounter in 

the last days of his life (Appendix I). It is unclear why PT56 did not contract the virus from 

her cubs during 2007 and/or 2008 (considering that the 12 month old cubs were 

seropositive when sampled in May 2008). A possible interpretation is that CDV is not 

 

 

Figure 5.8. The home ranges of tigresses PT35, PT55 and PT56 based on 95% fixed kernel 
contours using telemetry locations collected during 2004-6. Adapted from Goodrich et al. 
2010. 
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readily transmitted between tigers, and PT56 avoided contracting the virus from her 

dependent cubs. An alternative explanation is that the course of infection could be 

substantially longer in tigers than previously assumed, with animals infected for periods of 

up to three years before succumbing to infection (as in the case of PT56). This latter 

explanation cannot be excluded from the Russian data, but is unlikely based on the reports 

of CDV infection in captive tigers which indicate a course of infection lasting from a few 

days to several months (Gould and Fenner 1983, Appel et al. 1994, Zenker et al. 2001, 

Konjević et al. 2011, Nagao et al. 2012). The only exception in the literature was a case 

involving a captive Bengal tiger (P. tigris tigris) that exhibited severe and progressive 

neurological signs for a period of 16 months, however the severity of disease in this tigress 

would not have been compatible with survival in the wild (Blythe et al. 1983).  

 

This sequence of exposures in this well studied group of tigers raises a number of 

observations and questions that have important implications for the epidemiology of CDV 

in the species. Analysis of telemetry data from PT35 and PT56 indicate that on no occasion 

during 2006 and 2007 were these tigers within 1 km of each other (J. M. Goodrich pers. 

comm. 2016), suggesting that the exposure of their respective litters of dependent cubs 

were unlikely to have been contracted from each other. Assuming that PT56 was not 

infected for the unprecedented period of three years before her death, then she did not 

contract the virus from her cubs, despite prolonged periods of close contact. Likewise, the 

infection of PT90 was unlikely to have occurred before 2009, suggesting that he did not 

contract infection from any of the breeding females within his territory. It would then 

follow that at least four separate inter-specific transmission events were involved in the 

exposure of these tigers (i.e. 1. PT79/PT80/PT81; 2. PT88/PT89; 3. PT55; 4. PT90/PT56). 

Furthermore, intra-specific transmission between tigers is not inevitable, even when there 

is prolonged contact such as that between a mother and dependent cubs (i.e. PT56 and her 

cubs PT88 and PT89). Taken together, this suggests that transmission from other species 

may occur fairly regularly, and may be comparatively more important than tiger-to-tiger 

transmission for facilitating exposure across a population. This is despite the suggestion 

based on PT56 that infectious period may be longer in some tiger cases than is typical in 

other species (e.g. up to 60-90 days in dogs, Greene and Appel 2006; and 9-32 days in 

ferrets, Ludlow et al. 2012). Long infectious periods could contribute to intra-specific 

transmission, in a species where contacts are infrequent, but may only have been important 

in the tiger-to-tiger transmission that occurred between PT90 and PT56.  
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The identification of reservoir populations has important implications for management 

decisions, and the findings of this study support the involvement of wildlife in CDV 

maintenance. The phylogenetic analysis of CDV sequences obtained from mesocarnivores 

clustered together with those obtained from tigers and other large carnivores, supporting 

their possible role as sources of infection (Chapter 4). Mesocarnivore sequences from four 

geographic locations were also well distributed across the Russian wildlife lineage, 

suggesting long chains of transmission that would be expected in a maintenance population 

(Chapter 4, Viana et al. 2014). Serological findings add to this picture, with exposure 

detected among archived samples from Southwest Primorskii collected during 2007-8, and 

among samples collected during the present study in Lazovskii and SABZ in 2013 and 

2014. Furthermore, CDV sequences were detected in wildlife in the vicinity of SABZ in all 

three seasons from which fur trapper samples were collected (Chapter 4). This contrasts 

with the situation in other parts of the world, where CDV infections appear to occur in 

cyclical waves, with epizootics occurring during discrete periods of time, interspersed by 

several years during which the virus falls below readily detectable levels (Roscoe 1993, 

Alexander and Appel 1994, Williams 2001). Long term monitoring would be required to 

confirm temporal trends, but current data suggests that Russian forests support sufficient 

numbers of susceptible wildlife to maintain CDV at detectable levels over a period of at 

least three years.  

 

Molecular data (Chapter 4) and serological data presented here suggest that several wildlife 

species such as sable and raccoon dogs may be involved in CDV transmission, while the 

role of others is less certain. While the samples obtained from fur trappers were biased 

toward sable, the number of viruses detected from this species suggests an important role 

in the circulation of CDV (Chapter 4). Unfortunately, the live capture of sable in cage traps 

is difficult, and therefore very few serum samples were available to investigate patterns of 

exposure in this species further. Among other mesocarnivore species, seroprevalence was 

highest among raccoon dogs, with seropositive individuals detected in all three study areas. 

Similar seroprevalence levels have also been found in this species in Japan (13.2%, n=317, 

Suzuki et al.2015, and 20.1%, n=19, Kameo et al.2012), and the Republic of Korea 

(44.1%, n=102, Cha et al.2012), with a further Korean study finding a markedly higher 

seroprevalence (89.4%, n=94, Yang et al.2013). It is unclear why there should be higher 

seroprevalence found in the Korean studies, than neighbouring countries. The two studies 

measured seroprevalence in different locations (Chonbuk province in Cha et al.2012, and 

the provinces of Gyeonggi-do and Gangwon-do in Yang et al.2013), and the disparity in 
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seroprevalence may have reflected variation in raccoon dog density, or other factors such 

as the age distribution of animals surveyed. High rates of turnover in other raccoon dog 

populations may favour the maintenance of pathogens, with between 68.4% and 77.1% of 

raccoon dogs in Japan and Finland found to be less than a year old (Obara 1983, Helle and 

Kauhala 1993).  If the age structure of raccoon dogs in Primorskii were similar, then 

annual production of immunologically naïve juveniles would contribute to the maintenance 

of CDV in wild mesocarnivores.  

 

The relatively low seroprevalence detected in Asian badgers is difficult to interpret. Only 

two of 43 badgers were considered positive, but inconclusive titres in a further five could 

suggest a higher level of exposure (e.g. if CDV infection elicited a lower humoral response 

in badgers than other species, which is currently unknown and requires further 

investigation). Even discounting inconclusive titres, a low seroprevalence need not indicate 

a lack of exposure, if case fatality of badgers were higher than in other species. The 

detection of CDV sequences in a dead badger from Southwest Primorskii (Chapter 4) 

confirmed that at least some animals succumb to infection. Infections with CDV are 

common in the closely related Eurasian badger M. meles in Europe (Van Moll et al. 1995, 

Monne et al. 2011, Nouvellet et al. 2013), although most reports refer to mortalities 

occurring during known outbreaks. Serological surveys conducted in Japan found 8.7% of 

closely related Japanese badgers M. anakuma carried antibodies to CDV (CI: 1.2 - 28.0%, 

n=23, Suzuki et al.2015), which is roughly comparable to the 4.7% (CI: 0.4-16.3%, n=43) 

measured during this study. While the role of Asian badgers in the circulation of CDV in 

Primorskii remains unclear, it is possible that their contribution may be greater than 

suggested by serological findings alone. This highlights the importance of combining 

multiple sources of data (such as the molecular findings from Chapter 4, and the 

serological data reported here), as well as the need for further research.  

 

One common species that is notably under-represented in both molecular and serological 

surveys was the red fox. This species has been widely sampled in Europe, with 

seroprevalence measured between 4.4% and 18.7% (Amundson and Yuill 1981, Truyen et 

al. 1998, Sobrino et al. 2008, Akerstedt et al. 2010), and virus detected in several countries 

(Monne et al. 2011, Denzin et al. 2012, Trebbien et al. 2014). Techniques used in the 

present study are unsuitable for the capture of foxes, and further work would be required to 

assess their role in the epidemiology of CDV in Primorskii. In other parts of the world, red 
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foxes have adapted to urban environments, potentially increasing the opportunity for 

contact and CDV transmission with domestic dogs. Similar increases in the zoonotic 

transmission of the tapeworm Echinococcus multilocularis have been proposed as foxes 

become more urbanized, however there is currently little evidence to support this 

(Deplazes et al. 2004, Bradley et al. 2007). However, the commercial value of red fox pelts 

in Russia has limited their encroachment on populated areas in the Primorskii, with 

raccoon dogs being a more familiar inhabitant on the periphery of human settlements.  

 

The pattern of exposure recorded in unvaccinated domestic dogs was unexpected, with 

progressively higher seroprevalence found in more remote and less populated study areas. 

This contrasts with the epidemiology of the closely related measles virus, which is 

maintained in large urban centers, where human host populations exceed a critical 

community size sufficient to maintain the pathogen, and give rise to waves of sporadic 

outbreaks that spread outward through smaller more remote communities (Bartlett 1957, 

Grenfell et al. 2001). This pattern of infections would lead to high seroprevalence in dense 

urban populations, with exposure less likely in more remote and less populated areas. 

Serological surveys of dogs along an urban-rural gradient in two areas of Chile have 

followed this pattern, with CDV seroprevalence in urban areas of 61-76% comparing to 

34-47% in rural communities (Acosta-Jamett et al. 2011, 2015). In the present study, 

seroprevalence was lowest among dogs in Southwest Primorskii, located adjacent to large 

urban centers and supporting more dogs than Lazovskii and SABZ. Furthermore, recent 

outbreaks (based on the presence of antibodies in unvaccinated dogs aged 4-12 months) 

were evident in all communities and study periods in SABZ, compared to just 2/12 

communities surveyed in Southwest Primorskii, suggesting a greater frequency of 

outbreaks in remote areas.  

 

One factor that might explain this pattern of exposure might be a disparity in veterinary 

care. If fewer dogs in remote areas were vaccinated against CDV, then outbreaks might be 

larger, resulting in higher seroprevalence among survivors. This pattern is indeed evident, 

with 39.3% of dogs in Southwest Primorskii receiving a CDV vaccination at least once in 

their lives, compared to 23.9% in Lazovskii and 26.4% in SABZ (Chapter 3). However, the 

serological survey also raised questions about the effectiveness of vaccination in the 

settlements visited, with only 40.8% of vaccinated dogs found to be seropositive (n=152), 

and only 21.1% with presumed protective titres. Other studies have reported antibody titres 
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of 1:16 or higher in 60-92% of vaccinated dogs, suggesting that levels of protection are 

unusually low in Primorskii (Olson et al. 1988, 1996, 1997, McCaw et al. 1998, Bohm et 

al. 2004, Ottiger et al. 2006, Schoder et al. 2006). Given that vaccination programmes aim 

to achieve a coverage of 1-1/R0, in order to keep the proportion of susceptible animals 

below the threshold that allows a pathogen to proliferate, it is possible to estimate the 

adequacy of existing vaccine provision in the study areas. Even if titres of 1:16 were to be 

considered protective, this level of vaccination and vaccine response would only be 

sufficient to control CDV if Re were between 1.11 in Lazovskii and 1.19 in Southwest 

Primorskii. Estimates of Re based on age-matched seroprevalence in this study were 

between 1.39 (±0.068) and 1.48 (±0.063), suggesting that vaccination in each of the study 

areas would be insufficient to control CDV.  

 

An alternative explanation for the high seroprevalence found in dogs in remote areas might 

be a greater likelihood of exposure through contact with wildlife. One of the highest 

seroprevalence levels was recorded in the small village of Taejnoye in SABZ, located 

approximately three hours by road from the town of Ternei, and the most remote 

settlement surveyed. This forest community contained just 32 dogs in 2014, none of which 

were reported to visit other settlements (Chapter 3). Maintenance of CDV is not possible in 

such a small population, and opportunities for introduction from larger population centers 

are limited. However, four of five unvaccinated dogs that were sampled in the settlement 

were found to be seropositive, including one young dog of 12 months, which had been 

born in the village. One distinctive feature of Taejnoye was the high proportion of dogs 

that were taken to the forest  (reported for 18 of 30 dogs for which owners provided 

information). Based on ownership surveys (Chapter 3), the proportion of dogs with forest 

access was greater in SABZ (54.6%,), than Lazovskii (40.4%) and Southwest Primorskii 

(37.1%).  Seroprevalence of dogs with access to the forest (34.2%) was greater than those 

without (25.0%). This difference was not found to be significant at a 95% confidence level 

(p = 0.074), but only by a small margin, and may have been confirmed with a larger 

sample size. Also it is likely that dogs that contract CDV from wildlife in the forest could 

act as a source of infection for dogs that do not leave the confines of human settlements. Of 

the four seropositive dogs detected in Taeojnoye, three were reported to visit the forest, 

and the fourth shared a house with a dog that was reported to do so (although no samples 

were collected from this animal).  
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Although contact with wildlife may increase the exposure of domestic dogs, the detection 

of Asia 4 clade viruses in Vladivostok in 2016 suggest the circulation of CDV independent 

from wildlife (Chapter 4). These Asia 4 clade viruses were distantly related to those found 

in wildlife, and were likely to have been imported from tropical Asia (Chapter 4). While 

the Arctic-like clade found in wildlife, was not detected in domestic dogs, patterns of 

seroprevalence suggest that some dogs are exposed to these viruses through contact with 

wildlife, particularly in more remote rural settlements such as those in SABZ. The low 

levels of seroprevalence detected in dogs in the more densely populated study area of 

Southwest Primorskii, adjacent to large urban centers could be due to the circulation of 

dog-specific strains that are distinct from those found in wildlife, transmission of Arctic-

like viruses from wildlife sources, or a combination of the two. Based on current data, it is 

not possible to determine whether dogs are contributing to the maintenance of multiple 

CDV strains in Primorskii, or whether exposure relates to introduction from other species, 

or regions.  

 

While CDV infections have become particularly evident among tigers, they are not the 

only large carnivore species to have been exposed to the virus. The finding of two 

seropositive Far Eastern leopards is of particular importance, given the ‘Critically 

Endangered’ status of the subspecies, and the fatal infection recorded during 2015 (Chapter 

4). The only previous indication of CDV exposure in a wild leopard involves a single 

seropositive animal from Kenya (Kock et al. 1998), although several fatal infections have 

been recorded during two separate outbreaks in captivity (Appel et al. 1994). With the 

entire population of Far Eastern leopards limited to fewer than 60 individuals in a single 

isolated subpopulation (Stein et al. 2016), CDV could represent an important threat to the 

survival of the subspecies. This adds to the justification for establishing one or more 

insurance populations of leopards in other locations (Goncharuk et al. 2015), and heightens 

the need to manage CDV in the Southwest Primorskii region itself.  
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Conclusion 

This study has confirmed that exposure of tigers to CDV is widespread, and has increased 

since 2000. The presence of CDV antibodies in wildlife in 1993-4 indicates that recent 

tiger infections are not purely related to an expansion of CDV distribution. Exposure of 

mesocarnivores in all study areas augments phylogenetic evidence showing closely related 

viruses in tigers and other wild carnivores, and supports the case for a wildlife reservoir of 

infection. Growth of mesocarnivore populations, and possibly elevated hunting pressure 

might explain the observed increase in tiger exposure. The role of dogs in CDV 

maintenance remains unresolved. Exposure in all study areas confirmed that domestic 

infections are common, but higher seroprevalence in remote areas may suggest 

transmission from wildlife. The apparent prominence of wildlife in CDV maintenance 

indicates that management strategies directed at domestic dogs would be unsuccessful in 

preventing infection of tigers. Given the difficulty of controlling CDV in a wildlife 

reservoir, management strategies that focus on tiger populations may have greatest chance 

of success. 
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Chapter 6 A review of potential strategies for 
managing canine distemper virus as a threat to 
Amur tiger populations in the Russian Far East 

 

When measured against the declines that have driven global tiger distribution to just 7% of 

its historic range, the population of Amur tigers (Panthera tigris altaica) in the Russian Far 

East has fared comparatively well (Sanderson et al. 2006, Miquelle et al. 2010b). After 

surviving a bottleneck during the 1940s, where human pressures reduced numbers of Amur 

tigers to as few as 20-30 individuals, the population climbed steadily to 331 to 393 adult 

and subadult tigers by 2005 (Miquelle et al. 2007, 2010b). However, recent surveys 

indicate that numbers have plateaued, and may now be in decline once again (Miquelle et 

al. 2010a). In the face of these conditions, it is essential that wildlife managers are 

equipped with sufficient information to prioritize conservation measures accordingly.  

 

While poaching and human-tiger conflict remain the primary threats facing Amur tigers 

(Goodrich et al. 2008), recent cases of canine distemper virus (CDV) represent a new and 

additive cause of mortality (Quigley et al. 2010, Seimon et al. 2013, Robinson et al. 2015). 

Simulations that include CDV epidemiology in a population viability analysis have shown 

that even conservative levels of CDV infection increases the potential for tigers to decline 

to extinction, an effect that disproportionally affects small and isolated populations (Gilbert 

et al. 2014). The objective of this PhD was to generate data on the epidemiology of CDV 

in the Russian Far East, to inform management recommendations appropriate to local 

conditions. This chapter will review the findings of this work, and use the salient features 

of host demography, CDV exposure and virus phylogeny, to prioritize mitigation strategies 

that could address the impact of CDV on the Amur tiger population.  

 

Synthesis of study findings 

Canine distemper virus infections in tigers in Primorskii Krai 

Based on the results of serological and molecular based surveys it is evident that there has 

been widespread exposure of Amur tigers to CDV since the year 2000 (Chapters 4 and 5). 

Prior to this study CDV infections had been confirmed in one tigress in 2003 and two more 
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individuals in 2010 (Quigley et al. 2010, Seimon et al. 2013), with antibodies detected in 

six tigers (including the clinically affected tigress from 2003, Goodrich et al. 2012). The 

results of molecular analyses described in Chapter 4 identified CDV infection in a further 

three tigers (in 2006, 2010 and 2013), and detected the first case of infection in a Far 

Eastern leopard (P. pardus orientalis) in 2015.  Serological surveys described in Chapter 5 

detected antibodies in a further 14 tigers between 2000 and 2014, equating to an overall 

seroprevalence of 35.7% recorded since 2000 (CI: 23.7-49.7%, n=56). Exposure has 

occurred regularly in the intensively monitored population in the Sikhote-Alin Biosphere 

Zapovednik, with the detection of infected tigers (Chapter 4), and seropositive young tigers 

(Chapter 5) indicating that transmissions have occurred during at least five discrete periods 

between the late 1990s and 2011. Although cases of infection have only been recorded in 

tigers near human population centers, or well-monitored areas, seropositive tigers in 

remote locations suggest that further undetected mortality is likely (Chapter 5).   

 

The lack of antibodies to CDV detected in the 19 tigers sampled between 1992 and 1999 

(CI: 0.0-20.9%), could reflect a type II sampling error (where the presence of exposure in 

the wider tiger population was not detected due to a relatively small sample size), or 

indicate that tigers were not exposed to the virus during that period. The significant 

increase in exposure following 2000 could be explained by the acquisition of adaptive 

mutations to the CDV genome that enhance transmissibility to tigers, or environmental 

factors, such as changes in viral distribution, or increased transmission from other host 

species. The detection of antibodies in two Far Eastern leopards and a brown bear (Ursus 

arctos) in two locations in 1993-4 indicated the presence of CDV in areas occupied by 

tigers prior to 2000, confirming that any increase in tiger exposure was not due to an 

expansion of viral distribution (Chapter 5). Several mutations in the CDV genome have 

been proposed as promoting infection in non-canid hosts (Nikolin et al. 2012), but none of 

these were detected in the CDV sequences obtained from tigers in this study. However, the 

existence of other as yet unidentified adaptive mutations cannot be discounted. The 

potential for an increase in transmission from other host species will be discussed in more 

detail below, in the sections titled ‘CDV infections in domestic dogs in Primorskii Krai’ 

and ‘CDV infections in mesocarnivores in Primorskii Krai’.  

 

The presence of antibodies in approximately one third of the tigers sampled after 2000 

indicates that tigers are exposed to CDV on a regular basis, and also that a proportion are 
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surviving infection. Of the 20 seropositive tigers, three were found to be infected at the 

time of sampling (PT61, PT79 and PT56, Chapters 4 and 5, Table 5.5 and Appendix II), 

with the virus implicated in the death of at least two of these animals (PT61 and PT56, 

Chapter 4). The remaining seropositive tigers showed no signs of sickness, and many of 

them survived for years following sample collection. Published results from outbreaks in 

captive tigers are insufficient to estimate levels of morbidity and mortality, but it is clear 

that a proportion of clinically affected tigers in some of these outbreaks have survived 

infection (Appel et al. 1994, Zenker et al. 2001, Ngao et al. 2001). Comparable levels of 

exposure have been recorded in African lions, without apparent sickness or increased 

mortality (Munson et al. 2008, Alexander et al. 2010). In dogs, 25% to 75% of CDV 

infections are thought to be subclinical, and mortality of up to 50% has been estimated for 

dogs that develop disease (Appel 1987, Greene and Appel 2006).  While the actual 

mortality rate among tigers in Primorskii remains unknown, model simulations indicated 

that this uncertainty should have little impact on the extinction probability of affected 

populations (Gilbert et al. 2014).   

 

The diagnosis of CDV in more subtle cases during the present study, including animals 

involved in human-tiger conflict also suggests that infections may be under-reported. The 

introduction of CDV testing as part of a routine health screen whenever tigers are handled 

would therefore provide further information on CDV infections, and a means of assessing 

the role of the virus in human-tiger conflict. Additional factors may also influence the 

outcome of infections. During two outbreaks among lions in Tanzania, co-infection with 

Babesia spp. was proposed as a contributor to high mortality (Munson et al. 2008). No 

signs of coinfections were noted during review of histological samples from four of the 

Primorskii tigers where CDV infection has now been confirmed (Seimon et al. 2012, 

Chapter 4). However, only a limited set of tissues were available in several of these cases, 

and so the potential for co-infection with other pathogens cannot be excluded. Mortalities 

in CDV infected tigers and leopards were only confirmed in 2003, 2010 and 2015 

(although CDV may also have contributed to the deaths of tigers infected in 2006 and 

2013). The contribution of coinfections to these mortalities warrants further study, and in 

future cases would be aided by the collection of representative sets of tissues as a routine 

part of mortality investigations.  
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The maintenance of a pathogen in a population that is as small and sparsely distributed as 

the Amur tiger is only possible where infectious period is long, as this increases the 

potential for transmission during infrequent intra-specific contact events. Little is known 

about the infectious period of CDV in tigers, however in dogs viral shedding of 60 to 90 

days has been recorded, although is usually shorter than this (Greene and Appel 2006). The 

period of infection in ferrets varies with viral strain, with shedding evident for 9-32 days 

depending on the virus used (Ludlow et al. 2012).  While the present study was not 

designed to describe the infectious period of CDV in tigers, the sequence of events in the 

case of PT56 suggested that infections in wild tigers may be as long as six months (Chapter 

5, Appendices I and II). While this should favour tiger-to-tiger transmission, this appears to 

have been less important for exposure across a population than transmission from other 

species, based on serological data from one well-studied population of tigers in Sikhote 

Alin Biosphere Zapovednik (Chapter 5). Even if long infectious periods were to promote 

tiger-to-tiger transmissions, the fragmented social structure of tigers would make the 

maintenance of CDV in tigers unlikely. In these circumstances, infections are more likely 

to arise through transmission from more abundant host species, that act as a reservoir of 

infection (Woodroffe 1999, Haydon et al. 2002a). Identifying the species that contribute to 

the reservoir, and act as sources of infection for tigers is therefore critical to the design of 

rational control strategies.  

 

Canine distemper virus infections in domestic dogs in Primorskii 
Krai 

The study found little evidence to suggest that CDV is being maintained in populations of 

domestic dogs in Primorskii krai, but this cannot be ruled out unequivocally. In numerical 

terms, the large population of dogs in Primorskii could promote the maintenance of CDV, 

particularly given the rapid reproduction, and low rates of vaccination coverage revealed 

through demographic surveys (Chapter 3). However, this would be countered by the 

limited movement of dogs between settlements, and restrictions on roaming behaviour 

within communities, which would limit opportunity for disease transmission (Chapter 3). 

The detection of CDV neutralizing antibodies in unvaccinated dogs in many communities 

reported in Chapter 5 (including young dogs <1 year old) provides evidence of widespread 

circulation.  Higher seroprevalence and outbreak frequency among dogs in remote and less 

densely populated areas, and dogs with access to the forest suggests possible transmission 

from wildlife.  However, this is not incompatible with dogs maintaining CDV in their own 
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right, and the detection of Asia 4 clade viruses (which were distantly related to those found 

in tigers), suggests this could be occurring (Chapter 4).  

 

The apparent increase in CDV exposure of tigers in the years following 2000 may provide 

further indication of potential maintenance populations. Assuming that tigers are 

contracting CDV through direct contact with infected hosts (e.g. through predation), an 

increase in the frequency of exposure would require either an increase in tiger contact with 

the source population(s), an increase in CDV incidence in source species, or both. 

Numbers of domestic dogs have changed little in the decade preceding this study (Chapter 

3), and it is unlikely that dog populations were considerably lower during the 1990s when 

tiger exposure was limited or absent.  The only source of historic information on CDV 

infections in Primorskii dogs was collected in 2004, in locations that correspond to the 

three study areas referred to in the present survey (Quigley et al. unpublished, Goodrich et 

al. 2012, Table 6.1). Although sample sizes were small, seroprevalence is much higher 

than recorded in the present study, at 62.5% in Southwest Primorskii (CI: 25.9-89.8%, 

n=8), 73.3% in Lazovskii (CI: 44.8-91.1%, n=15), and 42.9% in SABZ (CI: 22.6-65.6%, 

n=21). Although incidence in dogs remains unknown during the 1990s, these findings do 

not support an increasing trend in CDV circulation. With no evidence for increasing CDV 

incidence, or population size, it is unlikely that changes in the dog population or their CDV 

infections are linked to the increasing CDV exposure observed in tigers.  

 

Canine distemper virus infections in mesocarnivores in 
Primorskii Krai 

The serological and molecular data gathered during this study implicates wild 

mesocarnivores as potential sources of infection for tigers in the Russian Far East 

(Chapters 4 and 5). Viruses from tigers shared a recent common ancestor to those detected 

in wild mesocarnivores, indicating that transmission was likely between their populations 

(Chapter 4). The finding that CDV sequences from mesocarnivores were spatially well 

mixed, rather than forming local sub-lineages, indicates that CDV is circulating widely, 

and suggests long chains of transmission that would be consistent with a maintenance 

population (Chapter 4, Viana et al 2014). Exposure and infections were detected in a range 

of mesocarnivore species suggesting a complex multi-host dimension to CDV maintenance  
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Table 6.1. Immunofluorescent antibody titres (IFA) measured against canine distemper virus 
for dogs sampled in Primorskii in 2004. Source: Quigley et al. unpublished. 

Dog ID Location IFA result
Positive 
titre Vaccinated

Age 
(months) Sex

KD1 Southwest Negative - Unknown Unknown Unknown
KD2 Southwest Negative - Unknown Unknown Unknown
KD3 Southwest Negative - Unknown Unknown Unknown
KD4 Southwest Positive 1:50 Unknown Unknown Unknown
KD5 Southwest Positive 1:250 Unknown Unknown Unknown
KD6 Southwest Positive 1:6250 Unknown Unknown Unknown
KD7 Southwest Positive 1:50 Unknown Unknown Unknown
KD8 Southwest Positive 1:50 Unknown Unknown Unknown
LD1 Lazovskii Negative - No 6 Male
LD2 Lazovskii Positive 1:50 No 7 Male
LD3 Lazovskii Negative - No 12 Male
LD4 Lazovskii Positive 1:50 No 18 Male
LD5 Lazovskii Negative - No 24 Male
LD6 Lazovskii Positive 1:50 No 30 Male
LD7 Lazovskii Negative - No 36 Male
LD8 Lazovskii Positive 1:50 No 36 Female
LD9 Lazovskii Positive 1:50 No 36 Male
LD10 Lazovskii Positive 1:50 No 48 Female
LD12 Lazovskii Positive 1:6250 No 60 Male
LD13 Lazovskii Positive 1:250 No 84 Female
LD14 Lazovskii Positive 1:50 No 96 Male
LD15 Lazovskii Positive 1:6250 No 168 Male
LD16 Lazovskii Positive 1:250 No 180 Male
TD1 SABZ Negative - No 1.8 Female
TD2 SABZ Positive 1:250 No 4 Male
TD3 SABZ Negative - No 5 Female
TD4 SABZ Negative - No 7 Male
TD5 SABZ Negative - No 9 Female
TD6 SABZ Negative - No 12 Male
TD7 SABZ Negative - No 12 Male
TD8 SABZ Negative - No 12 Male
TD9 SABZ Positive 1:1250 No 12 Male
TD10 SABZ Positive 1:50 No 12 Female
TD11 SABZ Negative - No 24 Male
TD12 SABZ Negative - No 24 Male
TD13 SABZ Positive 1:250 No 24 Male
TD14 SABZ Negative - No 36 Male
TD15 SABZ Positive 1:6250 No 48 Male
TD16 SABZ Positive 1:6250 No 48 Female
TD20 SABZ Positive 1:6250 No 72 Male
TD21 SABZ Positive 1:6250 No 84 Male
TD22 SABZ Negative - No 120 Male
TD23 SABZ Positive 1:1250 No 144 Male
TD25 SABZ Negative - No 156 Female  
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in wildlife, with exposure of raccoon dogs (Nyctereutes procyonides, Chapter 5), and virus 

in sable (Martes zibellina, Chapter 4) implicating these species as part of the CDV 

reservoir. Although virus was detected in one dead Asian badger (Meles leucurus, Chapter 

4), serological findings were unable to confirm their involvement in the reservoir, due to 

the difficulty in assessing the specificity of low antibody titers. Under sampling of 

abundant red foxes (Vulpes vulpes) also prevented conclusions being drawn for this 

species. Further research would be needed to confirm the involvement of Asian badgers 

and red foxes in the CDV reservoir in Primorskii krai. 

 

Long-term datasets suggest that at least some populations of wild carnivores have been 

increasing in the Russian Far East, which could explain the increase in tiger infections. 

Populations of fur-bearing species are monitored during an annual winter track count that 

is conducted using standardized methods (Dronova and Shestakov 2005). These figures 

indicate that the sable is the most abundant wild carnivore species nationally, with a 

population increasing from an estimated 599,900 in 1982 to 1,286,640 in 2014 (Dronova 

and Shestakov, 2005, Tsentrohotkontrol pers. comm. 2016, Figure 6.1). In the Russian Far 

East, sable were estimated to number 220,000 in 2000, and their populations are believed 

to be stable, or possibly increasing in the region (Dronova and Shestakov 2005). While the 

validity of these approaches to estimate absolute population size is open to question, the 

standardized approach supports their value as an index of population size, and suggests that 

numbers of sable are increasing.  

 

In recent decades, some of the most influential drivers of wildlife abundance were 

triggered by the sudden socioeconomic and institutional changes that followed the collapse 

of the Soviet Union in 1991 (Wells and Williams 1998, Baumann et al. 2012, Prishchepov 

et al. 2012, Bragina et al. 2015, Sieber et al. 2015). The near total disintegration of central 

government, and transition from socialism to a market-driven economy had major 

repercussions on wildlife populations, which responded to the changes in a variety of ways 

(Prishchepov et al. 2012, Bragina et al. 2015). Initially, severe economic hardship, and 

erosion of wildlife law enforcement brought an increase in poaching pressure, leading to 

sudden declines in many large-bodied mammal species (Wells and Williams 1998, Bragina 

et al. 2015). However, the transition also brought opportunities, particularly in the 

abandonment of former state-run farmland collectives, which over time began to revert to 

habitat types more suitable for many wild species (Baumann et al. 2012, Bragina et al. 
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2015, Sieber et al. 2015). The beneficial effects of habitat reversion can be deferred for 

several years (Bragina et al. 2015), and so any impacts on CDV dynamics may take time to 

become apparent. While the effect of these habitat changes on mesocarnivore populations 

remains unknown, it is possible that they may have contributed to the increasing numbers 

evident in winter track counts nationally, and potentially in the RFE.  

 

Changes in hunting pressure following the collapse of the Soviet Union may also have 

increased the potential of the sable population to act as CDV maintenance hosts. In areas 

where sable are hunted, juveniles (< one year old) are disproportionately represented in the 

population, as hunting reduces median life expectancy (Monakhov 2011). For instance, in 

two Russian populations subject to hunting, juveniles represented 62.7% and 75.6% of all 

animals in the population (Monakhov 2011). By altering the age structure in this way, 

hunting may act to reduce herd immunity, with the recruitment of immunologically naïve 

juveniles each spring creating a highly susceptible population. Modelling has predicted that 

these mechanisms can increase the prevalence of directly transmitted density dependent 

pathogens in culled populations (Choisy and Rohani 2006, Bolzoni and De Leo 2013), and 

may also contribute to increased virulence (Bolzoni and De Leo 2013). Thus, subjecting a 

growing population of sable to an increase in hunting pressure could lead to more 

explosive outbreaks, and increase the inter-species transmission of CDV.  

 

Fluctuating demand for sable fur led to a decline in hunting pressure during the 1990s, but 

an increase in the years since. Following the dissolution of the Soviet Union in 1991, state 

support for the fur trade ceased (Dronova and Shestakov 2005). This combined with a 

decline in the international fur market led to a marked reduction in the value of pelts. As a 

consequence, the annual harvest of fur-bearing species fell considerably below the annual 

quota for much of the 1990s (Dronova and Shestakov 2005). By the late 1990s, demand 

began to increase with the emergence of new domestic and international markets, and 

hunting pressure returned to former levels, and has increased steadily in the years since. 

These trends in hunting pressure are evident using a proxy based on the number of sable 

pelts sold through the St Petersburg auction each year, expressed as a proportion of the 

estimated national population (Figure 6.1B). At the end of the Soviet era, in 1990 sales of 

sable pelts were equivalent to 21.0% of the national population. These figures fell below 

10% from 1992 through 1994 as the market collapsed, then began to recover in the latter 

half of the decade. By 2001, hunting pressure was back to Soviet levels (20.9%), and 
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increased steadily for the remainder of the decade. By 2012, sales of sable pelts passed the 

half million mark, equivalent to 42.3% of the national population. A year later this rose 

further to 50.1%, before dropping back to 40.4% in 2014. Although speculative, the 

growing populations of mesocarnivores, and the potential for hunting to amplify CDV 

prevalence represent a feasible mechanism for the increased incidence of CDV in tigers, 

and strengthen the case for a wildlife reservoir in which the sable population plays an 

important role.  

 

Figure 6.1. National figures relating to sable numbers in the Russian Federation, 1987-2014, 
including: A) Estimated national population of sable based on annual winter tracking 
counts; B) Annual percentage of sable hunted, based on the number of wild sable pelts sold 
through the St. Petersburg auction, expressed as a percentage of the national sable 
population. Winter tracking counts were unavailable for 1996. Source: Tsentrohotkontrol. 
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Canine distemper virus management options 

Although further research could clarify the epidemiology of CDV in domestic dog 

populations, the apparent maintenance of the virus in wild carnivores represents the most 

important conclusion of this study. Even the successful control of CDV in the domestic 

dog population would not prevent exposure of wild tigers, while in the presence of a 

wildlife reservoir. This finding has considerable influence on the selection of management 

strategies that was the ultimate objective of the study.  

 

Small populations are more vulnerable to stochastic effects including infectious disease 

outbreaks that increase the potential for extinction (Woodroffe and Ginsberg 1998, Haydon 

et al. 2002b, De Castro and Bolker 2005, Gilbert et al. 2014). Model simulations have 

predicted that isolated populations of Amur tigers numbering 25 individuals were 1.65 

times more likely to decline to extinction within fifty years in the presence of CDV than 

control populations of equivalent starting size that were unexposed to CDV (Gilbert et al. 

2014). This contrasts with the situation in large populations that are able to withstand CDV 

outbreaks, with no impact on fifty year extinction probability above an estimated founder 

population threshold of 208 individual tigers (Gilbert et al. 2014).  

 

Given that the remaining population of Amur tigers is distributed in two subpopulations of 

unequal size, strategies to manage the impact of CDV should focus on the small, but 

strategically important subpopulation in Southwest Primorskii (Sorokin et al. 2016). 

Comprising as few as 10-20 individuals, this population has a high conservation value, as it 

acts as a source for recolonizing areas of northeastern China, where tigers have recently 

been extirpated (Henry et al. 2009, Miquelle et al. 2010b, Hebblewhite et al. 2012). The 

Southwest Primorskii region also supports the remaining wild population of the critically 

endangered Far Eastern leopard, which elevates the conservation importance of the region 

further. The detection of CDV cases in both species in Southwest Primorskii during this 

study emphasizes the vulnerability of these populations, and is an indicator that measures 

to mitigate the impact of CDV should be considered.  

 

The primary objective of managing CDV in Amur tigers is to reduce or eliminate the 

impact of the virus on population viability. Fundamentally, there are two main approaches 
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to achieving this: 1) measures to mitigate the impact of outbreaks when they occur, and 2) 

active control strategies to reduce the incidence of CDV infections in the tiger population.  

 

Impact mitigation measures 

One approach that could reduce the impact of future CDV outbreaks on the extinction 

potential of tigers in Southwest Primorskii is the introduction of measures to increase the 

ability of tigers to move to and from the main Sikhote-Alin population. Measures to 

improve connectivity between fragmented populations can benefit overall survival through 

a ‘rescue effect’ mediated through dispersal across the metapopulation, even at modest 

rates of immigration (Brier 1993, Gilbert et al. 1998). While some have cautioned that 

improved connectivity in a metapopulation could enable the dissemination of an emerging 

infectious disease (Hess 1996), modelling approaches have indicated that this is unlikely in 

wild situations, where infections spillover from an abundant reservoir, even when the force 

of infection is low (Gog et al. 2002, McCallum and Dobson 2002). Re-establishing 

connectivity with the Sikhote-Alin Mountains would enable immigration from tigers that 

could offset any future declines, and provide a corridor for leopards to recolonize former 

parts of their range.  

 

At the narrowest point, just a few hundred meters separates the disjunct tiger populations, 

which are bisected by the main Vladivostok/Khabarovsk highway (Figure 6.2). In Europe 

and North America, highway overpasses and underpasses have been used to facilitate 

dispersal of wildlife, including carnivores such as cougars (Puma concolor) (Foster and 

Humphrey 1995, Clevenger and Waltho 2000, Gloyne and Clevenger 2001, Corlatti et al. 

2009). The placement, and design of structures requires careful consideration, and 

acceptance by wildlife can be enhanced through habitat modification on either side of the 

crossing (Clevenger and Waltho 2000, Gloyne and Clevenger 2001). While the 

construction of crossings may require a large capital investment at the outset of the project, 

it would have the advantage of remaining effective as long as habitat continuity was 

maintained. If successful, this one action could help buffer the tigers and leopards in 

Southwest Primorskii from the impacts of CDV outbreaks, while also maintaining the 

genetic diversity of these isolated populations. 
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Figure 6.2. A) The Vladivostok-Khabarovsk highway close to the village of Razdol’noye. This 
highway represents an important barrier to tiger movement from the main Sikhote-Alin 
population (occupying forest on the left), with the strategically important Southwest 
Primorskii population (occupying forest on the right); B) A representation of a highway 
overpass that could effectively link the two populations, and reduce the potential for 
extinction of the Southwest Primorskii population through outbreaks of canine distemper 
virus, or other stochastic factors. 
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Canine distemper virus control measures 

In the context of reservoir systems, control strategies have been defined with reference to a 

target population, the intended beneficiary of the intervention strategy, in this case the tiger 

(Haydon et al. 2002a, Viana et al. 2014). Available control strategies fall into three broad 

categories: i) reduce transmission within the reservoir, ii) minimize the opportunity for 

transmission between the reservoir and the target population, or iii) reduce transmission 

within the target population itself (Woodroffe 1999, Haydon et al. 2002a, Laurenson et al. 

2005). Only the first of these strategies seeks to reduce or eliminate the pathogen in the 

environment, while the latter aims to reduce the impact on the target population directly.  

 

Several factors conspire against the management of CDV in a wildlife reservoir. Across the 

tiger range, collective populations of susceptible mesocarnivores are likely to comprise 

several hundred thousand individuals (Chapters 3 and 5). The prospect of reducing 

transmission in a reservoir of this size, particularly across a rugged and often inaccessible 

landscape of approximately 155,000 km2 is remote. Even if it were possible to vaccinate 

sufficient numbers of mesocarnivores over an area of this size, the continuity with the vast 

taiga forests extending north and west across Siberia would act as a continued source of 

viral reintroduction (as suggested by the recent common ancestor shared between 

sequences from Primorskii, Alaska and Europe, Chapter 4). Even if such widespread 

coverage were possible, the rapid turnover of mesocarnivore populations would necessitate 

the continued delivery of vaccines on an indefinite basis. Further confounding factors are 

the lack of orally deliverable vaccines, and safety concerns in some species (in which 

vaccine strains are capable of invoking clinical disease and mortality, Halbrooks et al. 

1981, McCormick 1983, Montali et al. 1987), which together render reservoir control 

strategies unfeasible.  

 

Measures to prevent contact between tigers and a wildlife reservoir are also unfeasible. 

Theoretically, transmission from a domestic reservoir could be limited by fencing tiger 

habitat, and restricting activities such as hunting, where dogs enter the forest (Laurenson et 

al. 2005, Belsare and Gompper 2015). But with only 7% of Amur tiger range falling within 

protected areas (Miquelle et al. 2005), and the cultural and economic importance of forest 

ecosystems to local communities, such measures would be unworkable and unacceptable, 

even if dogs were important reservoirs of the virus. For these reasons, managers are left 
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with one feasible strategy, vaccination of the tigers themselves, to protect the target 

population.  

 

Overview of wildlife vaccination 

There are few examples of vaccination being used for the long-term control of infectious 

disease in wildlife, with products more commonly used as an emergency response in the 

face of an outbreak (Table 6.2). The notable exception to this is fox rabies, which has been 

eliminated across western Europe through the widespread delivery of orally available 

vaccines (Mähl et al. 2014, Müller et al. 2015). However, these successes have yet to be 

replicated in the elimination of skunk and raccoon rabies in North America, illustrating the 

challenges in eliminating infectious disease from wildlife (Slate et al. 2005). The species 

composition of the rabies reservoir differs in North America, and some key populations 

(particularly skunks) have proven challenging to vaccinate using oral baits (Slate et al. 

2005). Due to the financial costs involved, large-scale elimination programmes are only 

considered for the control of serious zoonotic pathogens (e.g. rabies), or potentially for 

pathogens that exert a heavy economic impact (e.g. Mycobacterium bovis). For this reason, 

most other wildlife vaccination programmes have been smaller in scale, and many are 

experimental (Table 6.2).  

 

The use of vaccines in conservation management has largely focused on targeting the 

threatened species of interest, rather than attempting to eliminate the pathogen from the 

reservoir (with a few notable exceptions such as the vaccination of domestic dogs against 

rabies as an approach to limit exposure of Ethiopian wolves, Laurenson et al. 1998, which 

was ultimately unsuccessful in preventing outbreaks in the wolves Randall et al. 2004). As 

a result, sources of infection often remain unaffected, and the objective is to increase the 

capacity of the threatened population to withstand outbreaks, rather than eliminating 

infections entirely (Haydon et al. 2006, Prager et al. 2011). A clear disadvantage of this 

approach is the need to continue vaccinating in perpetuity, at least while transmission from 

the reservoir continues, or until the threatened population reaches a size where outbreaks 

no longer impact population viability. 



 

Table 6.2. Examples of vaccines use to control infectious disease in wildlife populations in the field. Delivery route is indicated as oral (O), intramuscular 
injection (IM), subcutaneous injection (SC), or unspecified parenteral route (PAR). Circumstances of vaccine use are summarised as outbreak response 
(OUTBRK), long-term control (CONTR), prophylaxis of released animals (RELEASE), field trial (TRIAL), or in development (DEV). Interventions reported by 
authors as unsuccessful are denoted by †. 

Target species Pathogen Country 
/Region 

Delivery 
route Situation Source 

Mountain gorilla Gorilla beringei beringei Measles Rwanda IM OUTBRK (Hastings et al. 1991) 

Black-footed ferret Mustela nigripes Canine distemper virus USA SC CONTR (U.S. Fish and Wildlife 
Service 2013) 

Island fox Urocyon littoralis Canine distemper virus USA IM, O OUTBRK (Vickers et al. 2004, 
Timm et al. 2009) 

Red wolf Canis rufus Canine parvovirus, 
canine distemper virus USA IM RELEASE (Harrenstein et al. 

1997) 

Reservoir species - Rabies Europe O CONTR 
Reviewed in (Mähl et 
al. 2014, Müller et al. 
2015) 

Reservoir species - Rabies North America O CONTR Reviewed in (Slate et 
al. 2005) 

African wild dog Lycaon pitus Rabies Tanzania, 
South Africa IM OUTBRK, 

RELEASE 
(Gascoyne et al. 1993, 
Hofmeyr et al. 2004) † 

Ethiopian wolf Canis simensis Rabies Ethiopia IM OUTBRK (Randall et al. 2006, 
Knobel et al. 2008) 

European rabbit Oryctolagus cuniculus Viral haemorrhagic 
disease, myxomatosis Spain SC TRIAL (Calvete et al. 2004) 

Wild boar Sus scrofa Classical swine fever Germany O OUTBRK Reviewed in (Moennig 
2015) 

Florida puma Puma concolor coryi Feline leukaemia virus USA IM OUTBRK (Cunningham et al. 
2008) 

Cheetah Acinonyx jubatus Anthrax Namibia PAR TRIAL (Turnbull et al. 2004) 

Black rhinoceros Diceros bicornis Anthrax Namibia IM CONTR (Turnbull et al. 2004) 

  



 

Target species Pathogen Country 
/Region 

Delivery 
route Situation Source 

Indian one-horned 
rhinoceros Rhinoceros unicornis Anthrax India  IM OUTBRK (Pandit and Sinha 

2006) 

Black rhinoceros, 
white rhinoceros, roan 
antelope, kudu, 
waterbuck, African 
buffalo hippopotamus 

Diceros bicornis, 
Ceratotherium simum, 
Hippotragus equinus, 
Tragelaphus 
strepsiceros, Kobus 
ellipsiprymnus, 
Hippopotamus 
amphibius 

Anthrax Zimbabwe IM OUTBRK (Clegg et al. 2007) 

Prairie dog spp. and 
other rodents Cynomys spp. Plague United States O TRIAL (Tripp et al. 2015) 

Black-footed ferret Mustela nigripes Plague United States SC CONTR 
(Rocke et al. 2008, 
U.S. Fish and Wildlife 
Service 2013) 

Common brushtail 
possum Trichosurus vulpecula Mycobacterium bovis New Zealand O TRIAL (Tompkins et al. 2009) 

Eurasian badger Meles meles Mycobacterium bovis United 
Kingdom IM TRIAL (Chambers et al. 

2011) 

Eurasian badger Meles meles Mycobacterium bovis Ireland O TRIAL (Corner et al. 2009, 
Aznar et al. 2011) 

Wild boar Sus scrofa Mycobacterium bovis Spain O DEV (Beltrán-Beck et al. 
2012) 

Bighorn sheep Ovis canadensis 
Pasturella multocida, P. 
trehalosi, Mannheimia 
haemolytica 

United States IM OUTBRK (Cassirer et al. 2001) † 

Koala Phascolarctos cinereus Chlamydia pecorum Australia SC TRIAL (Waugh et al. 2016) 

Tasmanian devil Sarcophilus harrisii Tasmanian devil facial 
tumour disease Australia SC DEV (Kreiss et al. 2014) 
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Risks of intervention 

As with any interventionist approach to wildlife management, there is a risk that 

vaccination programmes could have unintended and detrimental consequences for the 

animals involved (Woodroffe 2001, Laurenson et al. 2005, Cleaveland et al. 2007, 

Cleaveland 2009). These risks must be recognised, and measures taken to minimize their 

impact. The safety and efficacy of vaccine products for target species can often be assessed 

in a captive setting, enabling the development of protocols that minimize the risks to 

individuals, and ensuring the desired levels of immunity are achieved. Vaccine delivery 

methods must also take account of risks to non-target species, particularly when live 

vaccines that may be virulent in some taxa (Halbrooks et al. 1981, McCormick 1983, 

Montali et al. 1987, Sutherland-Smith et al. 1997). In cases where products must be 

delivered by the parenteral route, all measures must be taken to minimize risk of injury 

when animals are captured or when vaccine is delivered by remote injection. Anticipating 

these risks in advance, and adopting mitigation strategies can reduce the threat to target 

and non-target populations substantially. 

 

It is also important not to underestimate the wider implications of a vaccination 

programme that is perceived to have failed. Such negative perceptions, be they from other 

researchers, wildlife management authorities or the general public could jeopardise the 

prospect of future vaccination programmes, or even other interventionist research, such as 

placement of telemetry collars (Woodroffe 2001, Cleaveland et al. 2007).  

 

As a cautionary example, during the early 1990s the immunization of African wild dogs 

(AWDs, Lycaon pictus) against rabies in the Serengeti received high profile criticism, 

following the subsequent extinction of remaining packs (Burrows 1991, Creel 1992, 

Heinsohn 1992, Macdonald 1992, Burrows et al. 1994, Dye 1996). Critics proposed that 

immunosuppression related to the stress of capture may have activated latent rabies 

infections, and drew a direct link between the vaccination programme and the extinction of 

AWDs in the park (Burrows 1991, Burrows et al. 1994). Although these claims lacked 

support (Creel 1992, Macdonald 1992, Dye 1996, Woodroffe 2001), the negative 

perceptions led to a culture of risk-aversion among wildlife managers in many AWD range 

states and elsewhere (Cleaveland et al. 2007). Securing permission for wildlife captures 
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became increasingly difficult in many areas, and there has been a marked resistance to 

further wildlife vaccination initiatives.  

 

Lessons can be learned from the experiences in Serengeti that would greatly reduce the 

potential for similar situations arising in the future. Preparatory discussions with local 

stakeholders, exploring the likely consequences of inaction, and both positive and negative 

outcomes of intervention would help to achieve realistic a priori expectations. By 

incorporating vaccinated and non-vaccinated animals in programme design provides a 

means for assessing the impact of intervention on survival, and could also gain valuable 

insights into the epidemiology of the pathogen (Viana et al. 2014). Careful monitoring 

prior to, during and following the intervention, establishes health baselines, and increases 

the body of data available to determine the cause of any unforeseen outcomes. By 

incorporating local support at the outset, and maximizing opportunities to learn from the 

intervention, vaccination programmes stand the best chance of reaching conservation 

objectives, and encouraging successful outcomes in the future.  

 

Other risks inherent in wildlife vaccination include the consequences of withdrawal of 

coverage in event that the programme is interrupted due to financial constraints or other 

factors (Woodroffe 1999). In the case of the tigers, the objective of vaccination would be 

to mitigate the population effects of CDV infection in the tiger population, rather achieve a 

local elimination in the reservoir. Tigers would continue to be exposed to CDV as there 

would be no interruption in transmission from the reservoir population, but as long as 

vaccine delivery continued, inoculated tigers would be protected from natural challenge for 

the remainder of their lives. A cessation in vaccine delivery would lead to a gradual decline 

in the herd immunity of the tiger population, as vaccinated individuals died from other 

causes and were not replaced. Assuming no changes had occurred in the reservoir 

population, herd immunity would decline over time to pre-vaccination levels, with immune 

tigers represented solely by those surviving natural CDV challenge. In cases where 

vaccination is targeted to a reservoir population, the impact of vaccine withdrawal can be 

more problematic, particularly for vaccines that do not provide lifelong immunity 

(Woodroffe 1999).  These situations can lead to a large proportion of a population 

simultaneously becoming susceptible; creating conditions that can lead to large outbreaks. 

This situation is exacerbated further if vaccination led to an increase in the size of a 

reservoir population, thus increasing host density and rate of contact. 
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Available canine distemper virus vaccine products 

Vaccination has been the mainstay of CDV control since the introduction of formaldehyde-

inactivated products during the 1920s (Chappuis 1995, Bresalier and Worboys 2013). The 

virus is represented by a single antigenic subtype, and while some concerns have been 

raised about the risk posed by antigenic drift (Blixenkrone-Møller et al. 1993, Gemma et 

al. 1996, Iwatsuki et al. 1997), vaccine strains are generally thought to infer protection 

against all contemporary wild-type strains (Greene and Appel 2006). Humoral, cytokine 

and cell-mediated immune responses contribute to protection (Appel et al. 1982), but most 

studies use the humoral response to measure vaccine-derived immunity. There are several 

classes of CDV vaccines, each with distinct advantages and disadvantages:  

 

Modified live vaccines (MLVs) – These vaccines are widely used for the immunization of 

domestic dogs, and several Russian and international brands are available in the RFE. 

Derived from North American strains collected prior to the 1950s, MLVs have been 

attenuated through serial passages in live animals or cell culture (principally of canine or 

avian origin). Although MLV structure differs from contemporary strains (70.1-93.4% 

identity at the amino acid level of the external haemagglutinin protein), they continue to 

invoke a strong and long-lasting humoral immune response in dogs. Canine adapted strains 

(e.g. Rockborn) induce a ‘sterile immunity’, where viral replication does not occur 

following subsequent challenge, but vaccine-induced clinical infection are possible. 

Clinical disease is rarely associated with avian-adapted strains (e.g. Onderstepoort), but 

lead to a less potent “non-sterile” immunity. Both canine and avian-derived strains have 

been associated with clinical disease among some non-domestic carnivores such as red 

panda (Ailurus fulgens), black-footed ferret (Mustela nigripes) and others (Bush et al. 

1976, Carpenter et al. 1976, Halbrooks et al. 1981, Kazacos et al. 1981, McCormick 1983, 

Thomas-Baker 1985, McInnes et al. 1992). However, recent trials in captive tigers have 

demonstrated a strong humoral response to Onderstepoort-based vaccines, without clinical 

complications (Sadler et al. 2016), replicating the results of a more limited trial in lions (P. 

leo) (Kock et al. 1998).  

 

Recombinant vaccines – Vaccines based on a non-replicating viral vector expressing CDV 

haemagglutinin (HA) and fusion (F) genes have been used to invoke a “non-sterile” 

immunity in inoculated animals (Pardo et al. 1997, Schultz 2006). This has been achieved 
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experimentally with vectors based on canine adenovirus 2, and a vaccinia vector carrying 

measles HA and F glycoproteins (Taylor et al. 1991, Fischer et al. 2002). The principal 

advantage of recombinant vaccines is their safety, as they are unable to induce clinical 

CDV infections in sensitive species, and several canarypox-vectored products are marketed 

for this purpose. The main disadvantage of recombinant products is the short duration of 

immunity, with booster doses recommended after one year. However, a recent trial of a 

canarypox vectored vaccine in six tigers did not produce measurable antibodies by 26 days 

post inoculation, and only two tigers had measurable antibodies by day 66 (1:16 and 1:32) 

(Sadler et al. 2016). Based on these findings, and the short duration of immunity in other 

species, current recombinant products are unlikely to produce desired levels of immunity 

in free-ranging tigers, where revaccination is unlikely.  

 

Experimental vaccines – The potential for virulence of attenuated vaccines in some 

species, and low levels of immunity of recombinant products have encouraged the 

development of new experimental vaccines.  

1. Rationally attenuated vaccines based on a wild-type CDV virion replicate less 

efficiently in the host, due to the insertion of sequences into the open reading frame 

of the large (L) gene (Silin et al. 2007). These vaccines maintain the structure of 

external glycoproteins, which stimulate both a humoral and cell-mediated immune 

response. Desired levels of attenuation are achieved by manipulating the length of 

inserted sequences, so that replication is sufficient to stimulate immunity, while 

minimizing virulence. Other methods of attenuation could include the selective 

depletion of N-linked glycosylation sites on the haemagglutinin protein (Sawatsky 

and von Messling 2010). 

2. A chimera vaccine combining the exterior glycoproteins from a wild-type CDV 

with the interior proteins of a measles vaccine strain has been used experimentally 

in ferrets (Rouxel et al. 2009). The vaccine replicated within the host without 

inducing clinical disease, and conferred protection from subsequent challenge with 

virulent CDV. The attenuation of the chimera was attributed to pre-existing 

attenuating mutations in the measles vaccine, and the inability of measles V and C 

proteins to modify the immune response in non-natural hosts. 



Chapter 6. Managing CDV in Amur tigers  217 

3. Finally, plasmids containing DNA encoding for CDV haemagglutinin, fusion and 

nucleoprotein genes has been used successfully in protecting mink (Mustela vison) 

from challenge with wild-type CDV (Sixt et al. 1998). The ability to confer 

immunity without using whole viruses removes any potential for virulence in 

susceptible species. However, the need for repeated delivery to achieve protective 

immunity remains a significant drawback (Nielsen et al. 2012).  

 

Commercial CDV vaccines are generally delivered through parenteral routes, which would 

require the capture of tigers, or remote delivery via a dart. Experimental delivery of an 

avian-adapted MLV, rationally attenuated and chimeric vaccines via the nasal route have 

invoked humoral responses (Chappuis and Terre 1973, Silin et al. 2007, Rouxel et al. 

2009).  This raises the possibility of delivering vaccines via scent marking sites, that are 

regularly visited by tigers (David Smith et al. 1989), and are therefore one of the few 

predictable aspects of the species movements. To date, the delivery of CDV vaccines via 

the oral route has received little attention, but so far results have not been encouraging 

(Chappuis and Terre 1973). However, there have been considerable advances in the 

development of oral vaccines against other pathogens, and therefore further research is 

warranted. 

 

Use of canine distemper virus vaccines in endangered 
species 

 Although CDV vaccines are widely used for immunizing non-domestic carnivores in 

captivity (Deem et al. 2000), their use has been limited in the conservation of carnivores in 

the wild. Although contemporary CDV vaccines have shown high safety and 

immunogenicity in a range of domestic and wild species (Goodrich et al. 1994, Greene and 

Appel 2006, Sadler et al. 2016), the virulence of older-generation modified live vaccine 

strains in some non-domestic species contributes to concerns about vaccinating highly 

endangered wild animals. Such reactions can be difficult to predict, as exemplified by the 

deaths of four of six endangered black-footed ferrets (Mustela nigripes) that were 

inoculated with a modified live vaccine of avian origin, that had been used safely for the 

vaccination of domestic ferrets (M. putorius) (Carpenter et al. 1976). The only alternative 

vaccine available at the time, an inactivated product, induced a less protective immunity 

that was too short-lived to have been of practical value in free-ranging animals (Williams 
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et al. 1996). In this case, the predicament facing conservationists was clear, as the last 

remaining colony of black-footed ferrets ultimately declined below sustainable levels 

during a CDV outbreak, and required an emergency captive intervention (Thorne and 

Williams 1988).  

 

Delivery of vaccines to free-ranging carnivores presents another important challenge. 

Unlike the orally available vaccines used for the control of sylvatic rabies, contemporary 

CDV vaccines are designed for parenteral administration. The use of a recombinant 

canarypox vectored product, for the vaccination of Santa Catalina Island foxes (Urocyon 

littoralis catalinae) may have contributed to the control of a CDV outbreak, but required 

that individual foxes be captured, and the vaccine be delivered by intramuscular injection 

(Vickers et al. 2004, Timm et al. 2009). Similarly, a modified live vaccine has recently 

been used to inoculate free-ranging Ethiopian wolves (Canis simensis) against CDV (C. 

Gordon pers. comm. 2015). Such methods are both labour intensive, and therefore 

financially expensive, and risk stress and injury for the animals that are captured.  

 

Even with relatively accessible species, it takes time to achieve meaningful population 

immunity (Vickers et al. 2004), and so the approach may be more be appropriate for low 

coverage vaccination strategies, that aim to limit the impact of outbreaks at the population 

level (Vial et al. 2006, Haydon et al. 2006, Gordon et al. 2015). The availability of 

effective oral products could reduce costs, and the risks involved in capture. Oral delivery 

of a recombinant vaccine produced serum antibody titers in Island foxes in an experimental 

setting (Vickers et al. 2004), however, oral administration of the same vaccine was unable 

to stimulate a measurable humoral response in African wild dogs (Connolly et al. 2013). 

This disparity may have been dose related, and so further work is warranted (Connolly et 

al. 2013). Development of a reliable oral delivery system could have important 

implications for CDV management in the field, particularly for cryptic species such as 

Amur tigers that are rarely observed and challenging to capture. 

 

Features of a desirable vaccine 

It is evident that none of the existing CDV vaccines meet all of the criteria that would be 

optimal for use in free-ranging endangered carnivores. Methods of remote delivery that do 
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not require the capture or even visualization of target animals would be particularly useful 

for rarely observed species such as the Amur tiger. Due to the absence of economic 

incentives to develop vaccines specifically for endangered species, it will be necessary to 

evaluate existing and emerging products for conservation uses. For this reason, the 

following framework is proposed to enable the assessment of existing and new 

technologies, which could be adapted for the vaccination of endangered species: 

1. Safe in target species – A key pre-requisite, which should preferably be evaluated 

in a captive population of the same species, or if necessary a closely related model 

species. 

2. Safe in non-target species – Relevant to non-parenteral delivery methods, where 

there is no assurance that vaccine will be delivered exclusively to the target species. 

3. Induce protective immunity in target species – Requires an assessment of humoral 

and cell-mediated response in captive animals of the same species, or a closely 

related model species. The presence of antibodies in target species may imply 

immunity, but for ethical reasons challenge studies are unlikely to be possible to 

confirm this. Therefore, it may be necessary to infer immunity in endangered hosts 

based on response of related species in challenge studies. 

4. Protection with limited delivery – Opportunities to provide multiple doses may be 

limited in many free-ranging species, therefore products should ideally invoke 

protection through a single dose. 

5. Effective delivery to induction site – Of relevance to non-parenteral delivery, a 

vaccine must prime appropriate induction tissues to stimulate protection against 

natural infection (e.g. Peyer’s patches, oral or nasal mucosa). This can be promoted 

through use of formulations that: 

a. Prolong contact – Such as the use of viscous compounds for increasing 

contact with oral mucosa (Fry et al. 2012) 

b. Abrasive adjuvants – Use of abrasive materials to scarify oral mucosa to 

increase vaccine uptake and absorption (Edmonds et al. 2001). 
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c. Resist digestion – For products requiring contact with Peyer’s patch 

induction sites, suspension of active ingredients in a lipid matrix that 

permits transit through the stomach (Aldwell et al. 2003). 

6. Environmental stability – Non-parenteral preparations must maximize 

environmental stability, either through use of more stable recombinant products, or 

make use of packages to reduce degradation. 

7.  Accommodate behaviour of target species – Predictable behaviour may provide 

opportunities for vaccine delivery, such as oral or nasal delivery at trees used for 

scent marking. Strategies might also reduce exposure of non-targets, such as 

seasonal baiting of carcasses when other species are hibernating. 

8. Cost effective – Uptake of non-parenteral products is likely to be low, and so 

cheaper products can be distributed in greater numbers.  

 

Critical questions 

Before vaccination could proceed, several key questions must be addressed. 

1. Are current vaccines safe and effective in target species? – While experimental products 

may ultimately prove to be safer and more efficacious, any control programme in the 

near term must rely on contemporary vaccines that are already being marketed. As both 

modified live and recombinant vaccines are designed for parenteral administration, 

chosen products should be capable of inducing protective and ideally long-lasting 

immunity with a single dose, as revaccination may be difficult in many cases. Vaccines 

could be given to tigers that are handled for rehabilitation, or translocation, and 

potentially also for free-ranging animals captured as part of the control programme.  

 

A recent trial by Sadler et al. (2016) compared humoral response to a recombinant 

product given to eight captive tigers on days 0 and 39, yet only two had measurable 

titers of CDV-neutralizing antibodies by day 66. A further eight tigers were given a 

MLV, and were found to have measurable antibodies at least 171 days later. Vaccine 

safety was assessed by dosing an additional 41 tigers with the recombinant vaccine, and 

38 tigers with the MLV, and no adverse effects were observed. Based on the strong 
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humoral immunity induced by a single dose, and apparent safety in a relatively large 

cohort, suggests that the MLV may be most appropriate for use in free-ranging tigers.  

 

Currently the MLV product is unavailable in monovalent form, and the product tested 

included a canine parvovirus 2 component. This raises concerns for use in pregnant 

females, as parvovirus is associated with cerebellar hypoplasia in young born to infected 

cats (Kilham et al. 1967). This could be addressed through further safety testing of the 

bivalent product, or cooperation from the manufacturer to produce batches of 

monovalent CDV vaccine. Additional testing to determine the longevity of the humoral 

and cell mediated immunity following a single dose would also be desirable. Further 

testing in leopards would be required if vaccination were to extend to this species. 

 

2. How many tigers should be vaccinated? – Capture of free-ranging tigers is a time-

consuming and labour intensive activity, therefore it would be important to know if 

meaningful vaccine coverage is achievable. The existing population viability model 

should be adapted to assess the impact of practical vaccination strategies on population 

extinction risk. Low coverage vaccination strategies have been modelled for use in 

social canids (Vial et al. 2006, Haydon et al. 2006, Gordon et al. 2015), but their 

effectiveness should be verified for the distinct life history and ecology of the more 

solitary tiger. The population viability model should also be modified to reflect the 

biology of the Far Eastern leopard, if vaccination is to be considered for this species. 

 

3. Can vaccines be delivered orally? – The availability of an oral CDV vaccine could 

greatly facilitate the immunization of a free-ranging tiger population. Assuming that 

tigers would accept bait, laid for example in a carcass placed within their territory, then 

it could provide a mechanism for reaching more tigers, including those in remote areas, 

and potentially enable the delivery of booster doses. Few data have been published on 

the oral availability of CDV vaccines, and much of what has is contradictory (Chappuis 

and Terre 1973, Vickers et al. 2004, Connolly et al. 2013).  
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While initial entry of CDV is dependent on cells bearing the CD150 receptor (e.g. 

dendritic cells, macrophages and B and T lymphocytes), the identity of initial target 

cells is unknown (Ludlow et al. 2014). An oral CDV vaccine would need access to the 

same receptors used by the wild-type virus to stimulate an immune response. The 

process of attenuation of vaccine strains may have reduced their ability to bind to 

receptors in the oral mucosa, which could explain the lack of success in previous oral 

vaccination trials (Connolly et al. 2013). Therefore, confirming the viability of oral 

infection by exposing the oral mucosa of a susceptible surrogate species to wild-type 

CDV would be a valuable first step to assess the potential of an oral route of vaccine 

delivery. Confirmation that the oral mucosa is a suitable induction site could lead to 

further work to identify adjuvants to increase vaccine contact, and promote the 

stimulation of an immune response. Additional considerations would include measures 

to address environmental stability, and the potential for virulence in non-target species. 

 

The circumstances facing Amur tigers in the Russian Far East are not unique, as many 

other small populations of threatened carnivores are susceptible to CDV worldwide. Of the 

261 extant species of carnivore assessed by the International Union for Conservation of 

Nature (IUCN) in 2015, 25.7% are currently classified as threatened (vulnerable, 

endangered or critically endangered, IUCN 2015). A review of the IUCN Redlist database 

in 2006 found that CDV was the pathogen that most commonly contributed to the threat 

status of any mammal species (Pedersen et al. 2007). Outbreaks have already caused the 

near extinction of the black-footed ferret and Santa Catalina Island fox (Thorne and 

Williams 1988, Timm et al. 2009), and led to sustained declines in lion populations in the 

Ngorogoro Crater, Tanzania (Kissui and Packer 2004). Just as in Russia, management of 

CDV in threatened species is complicated wherever wildlife makes a significant 

contribution to CDV maintenance, and where control is warranted, vaccination of 

threatened populations should be considered. Further fragmentation of carnivore 

populations that are unable to adapt to an increasingly human-dominated landscape, will 

increase their vulnerability to CDV outbreaks. Consequently, the issues highlighted by 

CDV in Amur tigers are likely to occur more frequently, increasing the urgency for 

developing vaccine technologies and CDV control strategies for use in threatened species 

worldwide. 
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Appendices 

Appendix I. Canine distemper virus as a threat to 
wild tigers in Russia and across their range. 
Integrative Zoology 10:329–343  

 

The following paper summarizing the background of canine distemper virus in wild tigers 

was published in Integrative Zoology: 

Gilbert, M., S. Soutrina, I. Seryodkin, N. Sulikhan, O. V. Uphyrkina, M. Goncharuk, L. 

Matthews, S. Cleaveland, and D. G. Miquelle. 2015. Canine distemper virus as a 

threat to wild tigers in Russia and across their range. Integrative Zoology 10:329–

343. 
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Abstract 
Canine distemper virus (CDV) has recently been identified in populations of wild tigers in Russia and India. Ti-
ger populations are generally too small to maintain CDV for long periods, but are at risk of infections arising 
from more abundant susceptible hosts that constitute a reservoir of infection. Because CDV is an additive mor-
tality factor, it could represent a significant threat to small, isolated tiger populations. In Russia, CDV was asso-
ciated with the deaths of tigers in 2004 and 2010, and was coincident with a localized decline of tigers in Sikho-
te-Alin Biosphere Zapovednik (from 25 tigers in 2008 to 9 in 2012). Habitat continuity with surrounding areas 
likely played an important role in promoting an ongoing recovery. We recommend steps be taken to assess the 
presence and the impact of CDV in all tiger range states, but should not detract focus away from the primary 
threats to tigers, which include habitat loss and fragmentation, poaching and retaliatory killing. Research prior-
ities include: (i) recognition and diagnosis of clinical cases of CDV in tigers when they occur; and (ii) collec-
tion of baseline data on the health of wild tigers. CDV infection of individual tigers need not imply a conserva-
tion threat, and modeling should complement disease surveillance and targeted research to assess the potential 
impact to tiger populations across the range of ecosystems, population densities and climate extremes occupied 
by tigers. Describing the role of domestic and wild carnivores as contributors to a local CDV reservoir is an im-
portant precursor to considering control measures.

Key words: canine distemper virus, conservation threat, extinction, Panthera tigris altaica, population decline
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INTRODUCTION
Global populations of tigers, Panthera tigris (Linnae-

us, 1758), are at an all time low, with numbers of repro-
ductive females in the wild dropping below 1000 indi-
viduals (Walston et al. 2010). Pressure from agriculture, 
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industry and urbanization has fragmented tiger habitat, 
such that remaining populations occupy less than 7% 
of their former range and more than half of the world’s 
tigers are confined to habitat islands containing 25 or 
fewer individuals (Sanderson et al. 2006; Walston et al. 
2010). Even in suitable habitat, tigers face a variety of 
threats, including competition with humans for prey re-
sources, direct poaching to meet the demand for their 
body parts and retaliation due to conflicts with humans 
(Walston et al. 2010; Chundawat et al. 2011). While 
these anthropogenic factors are the main drivers of de-
clining tiger numbers (Robinson et al. 2015), these de-
pleted populations face new pressures associated with 
stochastic processes that have the potential to drive 
small, isolated populations to extinction. While inbreed-
ing depression is well recognized as a threat to small 
populations (Kenney et al. 2014), disease agents (patho-
gens) can also be important drivers of stochastic extinc-
tion in carnivore populations (Thorne & Williams 1988; 
Timm et al. 2009); however, their potential impact on 
free-ranging tigers has received little research atten-
tion. In Russia, canine distemper virus (CDV) has re-
cently been recognized as a cause of death in Amur ti-
gers, Panthera tigris altaica Temminck, 1844 (Quigley 
et al. 2010; Seimon et al. 2013), and could pose a po-
tential extinction threat, particularly to small popula-
tions (Gilbert et al. 2014). Recent reports have also con-
firmed cases of CDV in wild tigers in India, indicating 
that the threat may extend to tigers in other regions as 
well (ProMED 2014). The objectives of the present pa-
per are: first, to assess our current understanding of the 
status and impact of CDV on Amur tigers; second, to 
consider the potential impact of CDV to tigers across 
their range; and third, to outline steps needed to assess 
and monitor the threat of CDV to tiger populations both 
in Russia and elsewhere across their range. 

BIOLOGY OF CANINE DISTEMPER 
VIRUS

Canine distemper is caused by a paramyxovirus 
with a single-stranded RNA genome within the Mor-
billivirus genus, which has a near worldwide distribu-
tion (Williams 2001; Green & Appel 2006). Transmis-
sion of CDV primarily occurs through the respiratory 
tract during close contact with an infected individual, 
but quantities of the virus are also shed in the urine and 
feces. The virus generally enters the body via the respi-
ratory tract by infecting alveolar macrophages, and then 
spreads rapidly throughout the lymphatic system (Lud-

low et al. 2014). Infection of lymphatic cells, particu-
larly T and B lymphocytes, and the severity of the re-
sulting immunosuppression dictates the outcome of the 
disease (Green & Appel 2006). By the second week of 
infection the virus spreads to epithelial cells, resulting 
in respiratory and gastrointestinal signs as well as vi-
ral shedding in the urine (Ludlow et al. 2014). The vi-
rus also enters the brain by crossing the blood–brain 
barrier, or migrating along the olfactory nerve (Ludlow 
et al. 2014). Many animals die during the initial stages 
of the disease, but a proportion of the survivors may re-
lapse some time later, with a progression of neurologi-
cal signs (including behavioral changes, muscle twitch-
ing and seizures) as replication continues in the brain. 
Dogs may continue to shed the virus for up to 60 days 
(Green & Appel 2006), but captive tigers have been re-
ported to shed the virus in urine for at least 150 days (V. 
Keahey 2014, pers. comm.), although this was based on 
the results of molecular testing (reverse transcription 
polymerase chain reaction [RT-PCR]), and therefore the 
presence of viable virus cannot be confirmed. Patho-
logical lesions consistent with CDV infection were still 
present in a captive tiger with progressive neurological 
disease 18 months after initial exposure (Blythe et al. 
1983), and may be analogous to ‘old dog syndrome’ de-
scribed in domestic dogs (Green & Appel 2006).

Most families within the order Carnivora are suscep-
tible to CDV infection (Deem et al. 2000). However, the 
severity of clinical disease varies widely, being largely 
subclinical in some species (e.g. in domestic cats), while 
causing severe systemic disease leading to high mortal-
ity in others (e.g. ferrets) (Williams 2001). Clinical in-
fections and mortality have been recorded in a num-
ber of felids, but to date all published reports have been 
within the genera of Panthera (including lion, tiger, 
leopard, Panthera pardus, snow leopard, Panthera un-
cia, and jaguar, Panthera onca [Appel et al. 1994]) and 
Lynx (including Canadian lynx, Lynx canadensis, Iberi-
an lynx, Lynx pardinus, and bobcat, Lynx rufus) (Daoust 
et al. 2009; Meli et al. 2010). Antibodies to CDV with-
out clinical disease or mortality have been reported in a 
number of other cat species (including puma, Puma con-
color, cheetah, Acinonyx jubatus, Geoffroy’s cat, Leop-
ardus geoffroyi, and ocelot, Leopardus pardalis [Biek et 
al. 2002; Munson et al. 2004; Fiorello et al. 2007; Dales 
Nava et al. 2008; Thalwitzer et al. 2010; Uhart et al. 
2012]), suggesting that susceptibility may vary within 
the Felidae. This is supported by the low competence of 
domestic cats as CDV hosts during experimental stud-
ies (Appel et al. 1974), and relates to differences in the 
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structure of the cellular receptor (CD-150 or signaling 
lymphocyte activation molecule [SLAM]) used by CDV 
to enter lymphoid cells (Ohishi et al. 2014). Clinical in-
fections and mortality have also been recorded in other 
taxa, including rodents (Origgi et al. 2013), nonhuman 
primates (Yoshikawa et al. 1989; Sun et al. 2010) and 
peccaries (Appel et al. 1991). 

The multi-host nature of CDV represents a particu-
lar threat to endangered populations in situations where 
they coexist with more abundant susceptible hosts, 
which can act as a reservoir of infection (see Fig. 1). 
The fortunes of many single-host pathogens are den-
sity-dependent, where a decline in host density (e.g. 
through infection-related mortality) leads to a reduced 

Taken in isolation, populations of endangered species, such as tigers, are generally too small and at too low a density to maintain ca-
nine distemper virus (CDV) in the long term. These populations fall below a critical community size (CCS), beneath which a patho-
gen is unable to persist due to a depletion of susceptible hosts over time (Bartlett 1960). Multi-host pathogens, such as CDV, may 
represent a persistent threat to small populations, through regular spillover transmission from a pathogen reservoir. In the face of 
such complexity, a framework proposed by Haydon et al. (2002) for describing the constituents of a reservoir system provides a 
useful basis for understanding its functional dynamics. This defines a reservoir as one or more epidemiologically connected popu-
lations in which the pathogen can be permanently maintained and from which infection is transmitted to the defined target species 
(e.g. tigers). Individual populations that exceed the CCS, and can, therefore, maintain infection indefinitely are termed maintenance 
populations, although several non-maintenance populations could act synergistically to form a maintenance community. Finally, a 
source population is that which transmits infection directly to the target, and may either be a maintenance population, or be connect-
ed to the maintenance population as a transmission link to the target. 
The structure and constituent populations within a CDV reservoir are likely to vary across the global tiger range depending on the 
diversity, density and demography of susceptible host species. In Russia, reservoir candidates include domestic dogs and abundant 
wild carnivores, including sable (Martes zibellina), red fox (Vulpes vulpes), raccoon dog (Canis lupus familiaris) and Eurasian bad-
ger (Meles meles). Two simplistic representations of possible reservoir structures in Russia are illustrated in diagrams A and B. 

Populations can either be maintenance populations (squares) or non-maintenance populations (circles). Transmission of CDV oc-
curs in the direction indicated by the arrows. In A, dogs (d) and sable (s) exceed the CCS and are maintenance populations, while 
only raccoon dogs (rd) and dogs act as source populations of CDV infection for tigers (t). In this case all 3 populations contribute to 
the reservoir (indicated in grey), and control measures would need to target both transmission from dogs and raccoon dogs to tigers. 
In B, no individual population exceeds the CCS, but transmission between raccoon dogs and sable is such that the 2 populations can 
form a maintenance community (represented by the black frame). In this case raccoon dogs represent the only source of infection 
for tigers, and control measures would need to target either one or both of the populations contributing to the maintenance commu-
nity, +/or the transmission of virus from raccoon dogs to tigers. Clearly, these are just examples, and many other possible combina-
tions exist. However, successful control of CDV requires management of infection in maintenance populations or communities and/
or their transmission linkages with the tiger population. 

Figure 1 Defining the canine distemper virus reservoir.
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opportunity for infection. By contrast, more cosmopol-
itan multi-host pathogens may continue to infect rare 
host species in areas where a reservoir continues to act 
as a source of the virus, even as the endangered popu-
lation declines. Outbreaks of CDV have been implicat-
ed in population declines and near extinction of several 
wildlife species, including the African wild dog, Lycaon 
pictus (Fanshawe et al. 1991), the Santa Catalina Island 
fox, Urocyon littoralis catalinae (Timm et al. 2009), 
and the black-footed ferret, Mustela nigripes (Thorne & 
Williams 1988). 

Even in susceptible species, the epidemiology of 
CDV can be complex. For instance, CDV has been im-
plicated in local population declines of lions and African 
wild dog in several areas in East Africa (Fanshawe et al. 
1991; Roelke-Parker et al. 1996). However, in southern 
Africa, populations of these species have remained sta-
ble, despite high levels of CDV exposure (Alexander et 
al. 2010). Alexander et al. propose that habitat hetero-
geneity in southern regions led to a more complex host 
population structure, limiting the spread of outbreaks 
and enabling recolonization from surrounding areas 
in the wake of local extinctions. However, even in the 
more homogeneous grassland environments of East Af-
rica, CDV-induced losses are not inevitable, with mul-
tiple waves of CDV exposure evident in the serology 
profiles of the lion populations without coincident sick-
ness or population impact (Munson et al. 2008; Viana et 
al. 2015). Overt outbreaks among the lions of Serenge-
ti in 1994 and Ngorogoro in 2001 were attributed to cli-
matic patterns resulting in high vector numbers, with 
mortality from CDV associated with Babesia infection 
loads (Munson et al. 2008). The involvement of viral 
co-infections has been implicated in other cases of CDV 
mortality (Fix et al. 1989; Burtscher & Url 2007; Orig-
gi et al. 2013), and, therefore, it is important to consid-
er these, or other physiological stressors as a precur-
sor to disease. In spite of this, apparently uncomplicated 
CDV infections have led to mortality in captive tigers in 
North America, Europe and Asia, and so it appears that 
clinical outcome is not always dependent on co-infec-
tions (Appel et al. 1994; Nagao et al. 2012; Seimon et 
al. 2013). This may be due to variation in the virulence 
of different CDV strains, although it should be not-
ed that genetically diverse strains have caused mortal-
ity in Panthera species without apparent co-infections 
(including viruses from the Arctic-like, North Ameri-

ca-2 and Asia-1 clades) (Appel et al. 1994; Nagao et al. 
2012; Seimon et al. 2013).

CANINE DISTEMPER VIRUS IN AMUR 
TIGERS

Comparatively more is known about the health of 
wild tigers in Russia than any other range country, as 
samples are routinely collected whenever live or dead 
tigers are handled. Serum collected from tigers im-
mobilized during the placement of telemetry collars 
and in response to tiger–human conflict situations pro-
vides a baseline for assessing pathogen exposure (Go-
odrich et al. 2012; Naydenko et al. 2012). No CDV an-
tibodies were detected in 27 tigers sampled from 1992 
to 1999, suggesting that tigers at this time were not ex-
posed to the virus (Goodrich et al. 2012). However, Go-
odrich et al. (2012) report antibodies to CDV in 6 of 
13 tigers captured between 2000 and 2004, suggesting 
the introduction of CDV into this population during the 
early 2000s. In November 2003, a tigress captured in 
the village of Pokrovka, Khabarovskii Krai (46.69°N, 
134.03°E) was taken into care but died five weeks later 
(Quigley et al. 2010). Although ambulatory at the time 
of capture, this tigress was non-responsive to stimuli 
and unafraid of humans. She was later confirmed as the 
first case of CDV in a wild tiger (Seimon et al. 2013). 

Further cases of CDV in Amur tigers were con-
firmed in 2010. These included a 3–4-year-old male 
captured near the village of Aleksayevka, Primorskii 
Krai (43.56°N, 132.00°E) during February 2010, and an 
8.5-year-old tigress who entered the village of Ternei, 
Primorskii Krai (45.04°N, 136.78°E) and was shot on 
1 June 2010 (Seimon et al. 2013). A third case in 2010 
has recently been confirmed based on sequences ob-
tained from archived tissues and involved an adult male 
tiger that was shot close to Ternei in January 2010 (Gil-
bert et al. 2014, unpubl. data). All of these animals dis-
played neurological signs and were unafraid of humans. 
Video footage of a tiger behaving in this characteristic 
manner was taken along the Vladivostok-Khabarovsk 
highway between the towns of Vyazemski and Bikin, 
Khabarovskii Krai during the spring of 2010 (http://ti-
nyurl.com/las2yt7). Although this animal later died in 
care, no samples were available for analysis; therefore, 
CDV could not be confirmed in this case. 
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CANINE DISTEMPER VIRUS IN 
SIKHOTE-ALIN BIOSPHERE 
ZAPOVEDNIK

One of the most closely monitored populations of 
Amur tigers inhabits the Sikhote Alin Biosphere Zapov-
ednik (SABZ) in Primorskii Krai. The reserve is of suf-
ficient size to hold territories for 11 breeding females 
(assuming a territory of 384 km2, with average over-
lap of 11% between adjacent female territories) and 4 
breeding males (assuming a territory of 1160 km2, with 
average overlap of 14% between adjacent male territo-
ries), and lies within a wider matrix of suitable habitat 
that enables tigers to disperse to and from surrounding 
areas. This protected area limits access, allowing only 
rangers and researchers, such that tigers in core areas 
may rarely, if ever, encounter humans. However, four 
villages (inhabited by between 67 and 5350 people in 

2010) and a small number of isolated dwellings lie out-
side the protected area and represent a source of contact 
for tigers with territories along the reserve boundary, as 
well as individuals without territories that may move 
more widely through the landscape.

One of the confirmed CDV cases in 2010, the 
8.5-year-old tigress known as T02 (referred to as Pt 
2010-3 in Seimon et al. 2013), held a territory along 
the southern border of SABZ (Figs 2a and 3). This ti-
gress had been captured in 2002 and 2005 as part of a 
telemetry study, yet no CDV antibodies were detect-
ed from routine samples. She was subsequently recap-
tured on 24 March 2010, by which time CDV antibod-
ies were circulating (with a virus neutralization titre of 
1:256 measured at the Washington Animal Disease Di-
agnostic Laboratory, Pullman, WA, USA). In view of 
subsequent events, and the strong protective immuni-
ty that develops in animals that survive infection, it is 
likely that T02 was already infected by March 2010. 

Figure 2 (a) Locations of resident female tigers in Sikhote-Alin Biosphere Zapovednik (dark grey). Map includes rivers (black 
lines) and roads (double lines). Tigresses are illustrated by circles, and include T02 (red), T5 (blue), T6 (yellow), T7 (green), T14 
(purple) and T21 (white). Locations refer to camera trap captures made during 2009 and 2010, with the exception of T14, where 
captures from 2007 and 2008 are used (as this tiger was not photographed in 2009 or 2010). The home range of a further tigress (T47) 
is represented using a minimum convex polygon (orange), based on telemetry positions obtained during November and December 
2009. (b) Locations of resident male tigers in Sikhote-Alin Biosphere Zapovednik (dark grey). The map includes rivers (black lines) 
and roads (double lines). Tigers are illustrated by triangles, and include T10 (green), T15 (yellow), T16 (red), T19 (white) and T27 
(blue). Locations refer to camera trap captures made during 2009 and 2010, with the exception of T10, T15 and T19, where captures 
from 2007 and 2008 are used (as these tigers were not photographed in 2009 or 2010). 

a b
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Figure 3 A summary of camera trap captures of tigers in the central and southern regions of Sikhote Alin Biosphere Zapovednik 
(SABZ) between 2006 and 2013. Details of individual tigers include identity code, estimated year of birth, sex (F = female, M = 
male, UNK = unknown), status (R = resident, DC = dependent cub), the date and circumstances of last sightings. Identifiers with 
the prefix T refers to tigers recorded by camera trap, and the prefix PT refers to tigers fitted with radio collars. Both systems are 
used here to facilitate comparison with other publications. Transient tigers (recorded in only a single year) are excluded, as out-
come could not be determined. Annual status of each tiger is indicated for animals captured at least once (dark green), not captured 
and presumed absent (yellow), not captured but subsequently confirmed (light green), or not surveyed for (grey). The timing of 
births are indicated by blue asterisks, and confirmed tiger deaths are indicated by cells outlined in red. Additional notes on the cir-
cumstances of tiger deaths and disappearances are provided as footnotes. The arrival of immigrants is indicated using blue arrows. 
(†Scavenged/predated by large carnivore. ‡Killed by another tiger. §Likely old age [14 years]. ¶Killed by T19. ††Possible transient. 
CDV, canine distemper virus.

Tiger ID 
number

Estimated 
year of birth Sex Status

Date of last 
record 20

06

20
07

20
08

20
09

20
10

20
11

20
12

Outcome
T02 2001 F R 1 June 2010 Mortality (CDV confirmed)
T03 ~1992 F R 2007 Mortality (poached)
T04 ~1998 M R 2007 Mortality (poached)
T05 2001 F R 27 October 2009 Mortality (unexplained)†

T06 2004 F R
1 November 
2009 Disappeared (unexplained)

T07 UNK F R
6 November 
2009 Disappeared (unexplained)

T08 2006 F DC 2008 Dispersed to North SABZ

T09/PT85 UNK M R
6 December 
2007 Mortality (unexplained)

T10 UNK M R 2007 Disappeared (unexplained)
T14 UNK F R Alive 2013 Alive (circa 2013)
T15 UNK M R 2007 Disappeared (unexplained)
T16/PT90 ~1999 M R January 2010 Mortality (CDV confirmed)

T17/PT80 2005 F R
16 November 
2007 Mortality (poached)

T18/PT89 2006 M DC 30 July 2008 * Disappeared (dispersed?)
T19 UNK M R February 2011 > Mortality (natural)‡

T20 2006 F DC
8 December 
2008 * Disappeared (dispersed?)

T21 UNK F R 13 April 2011 > Disappeared (unexplained)

T25/PT88 2006 M DC
22 September 
2008 * Emigrated from SABZ

T26/PT35 1993 F R 2007 Disappeared (unexplained)§

T27 UNK M R Alive 2013 > Alive (circa 2013)
T29/PT96 2008 M DC 17 January 2010 * Disappeared (dispersed?)
T05 Cub A 2008 UNK DC 2009 * Disappeared (unexplained)
T05 Cub B 2008 UNK DC 2009 * Disappeared (unexplained)

T47/PT97 2008 F R
11 December 
2009 * Mortality (unexplained)†

T30 UNK M R Alive 2013 > Alive (circa 2013)
T32/PT100 2006/07 M R December 2011 > Mortality (poached)
T02 Cub A 2010 F DC May 2010 * Mortality (CDV related)
T02 Cub B 2010 F DC May 2010 * Mortality (CDV related)
T02 Cub C 2010 F DC May 2010 * Mortality (CDV related)
T33 2010/11 F DC December 2011 * Disappeared (dispersed?)
T34 2010/11 M DC December 2011 * Disappeared (dispersed?)
T21 Cub A 2010 UNK DC 2011 * Mortality (natural)¶

T21 Cub B 2010 UNK DC 2011 * Mortality (natural)¶

T35/PT114 2009 F R Alive 2013 > Alive (circa 2013)
T35 Cub A 2012 UNK DC Alive 2013 * Alive (circa 2013)
T35 Cub B 2012 UNK DC Alive 2013 * Alive (circa 2013)
T35 Cub C 2012 UNK DC Alive 2013 * Alive (circa 2013)

PT95 2004 M UNK
8 November 
2009 > Disappeared (dispersed?)††
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Antibodies to CDV appear after 10 to 20 days post-in-
fection in dogs (Green & Appel 2006), which if com-
parable in tigers would suggest an infection lasting at 
least 80 to 90 days in this tigress. By 1 May, T02 local-
ized her movements, and (as was later confirmed) gave 
birth to a litter of three cubs. Although T02 had proven 
to be a typically attentive mother when raising her three 
prior litters, on this occasion her behavior was unusual, 
leaving the den for several days at a time before finally 
abandoning her cubs entirely on 17 May. She was sub-
sequently observed at a nearby military outpost, before 
entering Ternei, where she was shot on 1 June 2010 to 
prevent injury to local residents. The presence of CDV 
was confirmed in brain tissue collected from T02, by se-
quencing of amplified gene products, and demonstration 
of consistent pathology (Seimon et al 2013). All three 
of her cubs consequently died. Evidence of CDV was 
not found in samples collected from 1 of those cubs, al-
though decomposition may have hampered test sensitiv-
ity. 

A recent re-examination of tissues collected from an-
other SABZ tiger, T16 (referred to as Pt 2010-1 in Sei-
mon et al. 2013) has confirmed that he was infected 
with CDV at the time of death (Gilbert et al. 2014, un-
publ. data, Fig. 3). This tiger was an 11-year-old male, 
who occupied a territory that encompassed that of T02. 
On 31 December 2009, T16 approached and killed a lo-
cal fisherman close to a group of houses 10 km west 
of Ternei. In common with other CDV cases, T16 dis-

played an unusual lack of fear, remaining in the open 
until he was shot and killed the following day. T16 was 
recorded in association with T02 in the fall of 2009. As-
suming that T16 had sired the litter of T02, then mating 
must have occurred just a few days prior to his death 
(given a gestation period of 98–111 days [Wack 2003]). 
In captive tigers mortality from CDV usually occurs 
within days or weeks of developing clinical signs (Gould 
& Fenner 1983; Appel et al. 1994; Konjevic et al. 2011; 
Nagao et al. 2012; V. Keahey, pers. comm.), but the 
length of the refractive period (before clinical disease is 
evident) remains unknown, and a delayed onset may be 
possible (Blythe et al. 1983). Therefore, it is conceiv-
able that T02 contracted her infection through contact 
with T16. 

The deaths of T16, T02 and her 3 cubs coincided 
with a period of heavy losses for the SABZ tiger pop-
ulation (Fig. 3). Population estimates for the whole of 
SABZ based on snow tracking data indicated a decline 
from 25 tigers in 2008 to 9 by 2012 (Fig. 4). Camera 
trap surveys carried out in the central and southern sec-
tions of SABZ provide a more detailed account of the 
numbers and movements of a subset of the reserve’s ti-
gers, and highlight a similar decline (Fig. 3 [Soutyri-
na et al. 2013]). The population of 15 tigers identified 
on camera traps in 2008 (representing a minimum pop-
ulation) had declined to 7 identified by the start of 2011 
(Table 1). Determining the cause of death in cryptic spe-

Figure 4 Annual tiger population estimates based on snow track surveys of Sikhote-Alin Biosphere Zapovednik from 1962 to 2012. 
Surveys are conducted annually from December through February along transects throughout the entire reserve.
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Figure 5 Annual tiger mortality and disappearances in Sikhote-Alin Biosphere Zapovednik between 2006 and 2012 attributed to 
poaching (white), canine distemper virus (CDV)-related (black), dispersal (confirmed or suspected based on disappearance at an age 
appropriate for dispersal [light gray]), natural (confirmed mortalities unrelated to humans and excluding CDV-related [cross hatch] 
and unexplained [dark grey]).

cies like tigers can be challenging, particularly in remote 
areas such as SABZ. However, the unexplained death or 
disappearance of 6 tigers during 2009 was unusual (Fig. 
5), and it is possible that several of these may have been 
related to CDV infections that were undetected.

During late 2009 a resident adult tigress (T05, Fig. 3) 
was found dead, with no sign of her litter of 2 or more 
dependent cubs (although at approximately 1.5 years of 
age these tigers may have dispersed beyond the study 
area). The body of a second younger tigress (T47) was 

Table 1 Population demographics of tigers in Sikhote-Alin Biosphere Zapovednik based on camera trapping surveys of central and 
southern regions of the reserve during 2006–2013. Numbers represent minimum estimates based on individual identifications of all 
tigers captured during camera trap surveys

Year
Tigers at year 
start (minimum) Immigrants Births Deaths Disappear Emigrants Transient

2006 ? 0 1 ? ? ? 4
2007 14 1 3 3 0 0 0
2008 15 2 2 2 3–5 2 0
2009 10–12† 1 2 3 0–2 0 1
2010 10 1 5 6 3 0 0
2011 7 2 2 3 0 0 1
2012 8 1 3 1 3 0 1
2013 8 4 8 ? ? ? 0

“Deaths” refers to confirmed mortalities (e.g. where a body was recovered, or intelligence indicated a poaching incident), “Disap-
pear” indicates absence of tigers where cause is unknown. †Two tigers (T10 and T15) disappeared some time during the years 2008 
and 2009. However, no camera traps were set within their territories during this period to confirm the timing of their disappearance. 
For this reason a range of values is used to express the minimum number of tigers present at the start of 2009. 
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found several months later (Fig. 3). Both of these car-
casses had been eaten by a bear or other large carni-
vore, although it was unclear whether this was the result 
of predation or scavenging. Consequently, the cause of 
death in these cases is open to speculation, and it is like-
ly that a young newly independent tigress such as T47 
could have succumbed to any of a number of possible 
dangers. However, T05 shared a territory with T16, the 
likely father of her cubs (Fig. 2), as did another resident 
adult tigress (T07) that was last recorded by camera trap 
on 6 November 2009 (Figs 2 and 3). A neighboring ti-
gress (T06) also disappeared in late 2009, with the last 
camera trap record on 1 November 2009 (Fig. 3). Mor-
talities unrelated to CDV continued in early 2011, with 
the death of 2 dependent cubs attributed to infanticide 
carried out by an adult male (T19), who also succumbed 
soon after to injuries sustained in a fight with another ti-
ger (Fig. 3). In May 2011, the carcass of a female with 
enlarged nipples (which suggested she was still nursing 
a litter) was found with 2 bullet wounds (This tiger was 
not captured or recorded on camera traps, and so is not 
included in Table 1).

These results suggest that there were multiple caus-
es of death occurring in the SABZ population within a 
small (18-month) timeframe (late 2009–early 2011) (Fig. 
3). CDV was not solely responsible for the dramatic de-
clines in SABZ tigers during 2009 and 2010, but in a 
worse case scenario (including the unknown causes that 
might have been disease-related) it is possible that as 
many as 6 adults/subadults succumbed to the virus, and 
at least 1 litter of 3 was lost because their mother was 
diseased. This additive mortality factor (Robinson et al. 
2015) demonstrates the vulnerability of small tiger pop-
ulations to stochastic events. The SABZ population has 
benefited from the continuity of habitat, which has en-
abled immigration of tigers from surrounding areas, and 
with continued protection and successful reproduction, 
recovery is already occurring (a minimum of 20 tigers 
were recorded by winter 2014). For smaller tiger popu-
lations, or those that are more isolated, the likelihood of 
withstanding additive losses similar to those occurring 
in SABZ during 2009 and 2010 would be considerably 
lower.

The close monitoring of tigers in SABZ enables a de-
tailed reconstruction of individual life histories of the ti-
ger population during the period that CDV was circulat-
ing in 2009 and 2010. However, even in this intensively 
monitored sub-population we are limited to best-guess 
estimates of the impact that CDV had on the tiger pop-
ulation in the reserve. Beyond SABZ, tigers with con-

firmed and suspected cases of CDV in 2010 occurred in 
disparate locations 300–500-km apart, near human habi-
tation and in distant corners of the Amur tiger’s range. It 
is unknown whether the proximity of these tigers to hu-
man habitation increased opportunities to contract CDV, 
or merely the chance that cases would be reported. 
However, with the majority of Amur tigers occupying 
vast, largely uninhabited areas, it is possible that oth-
er tigers may have succumbed to CDV during the 2009–
2010 period without detection. Yet with so many un-
certainties relating to the epidemiology of CDV across 
the Amur tiger range, there is a limit to the inferences 
that can be drawn from the SABZ outbreak, and the ex-
tent to which the overall Amur tiger population may 
have been affected. Under these circumstances, popula-
tion modeling can be a valuable tool to explore the key 
determinants that influence the impact of CDV on tiger 
populations. Recent models have shown that even mod-
est levels of tiger contact with a CDV reservoir will im-
pact population growth, and that small and isolated ti-
ger populations are disproportionately impacted (Gilbert 
et al. 2014). Refinements of models such as this require 
a more detailed understanding of reservoir composition 
and dynamics, if they are to provide further insights into 
the threat to a particular tiger population.

UNDERSTANDING RESERVOIR 
STRUCTURE

An understanding of local reservoir structure is a crit-
ical first step to begin assessing the impact that a multi-
host pathogen will have on a population, and is an 
important precursor to the design of management prac-
tices. Defining a reservoir is complex, but a framework 
proposed by Haydon et al. (2002, and summarized in 
Fig. 1) provides a useful means of conceptualizing al-
ternative structures. All populations of tigers share hab-
itat with a number of susceptible species that could con-
tribute to the local CDV reservoir as maintenance or 
non-maintenance hosts depending on their susceptibili-
ty, population size, turnover and frequency of effective 
contacts. More abundant susceptible hosts are likely to 
have a greater contribution to CDV maintenance, and in 
the context of the Russian Far East this is likely to in-
clude domestic dogs, and small or medium-bodied wild 
carnivores, particularly raccoon dogs, Nyctereutes pro-
cyonoides, red foxes, Vulpes vulpes, Eurasian badgers, 
Meles meles, and sable, Martes zibellina. Tigers prey on 
each of these host species, providing a likely route for 
CDV transmission (Miquelle et al. 1996; Ludlow et al. 
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2014). Underscoring this potential route of exposure, 
rangers in SABZ reported mortalities of red foxes and 
raccoon dogs from an unidentified disease in both 2009 
and 2010. Although tigers are largely solitary, they do 
interact regularly, albeit infrequently, providing a poten-
tial mechanism for tiger-to-tiger transmission (Goodrich 
et al. 2010). Aside from contact between mother and 
cubs, intra-specific contact is likely to be greatest be-
tween territorial tigers of the opposite sex, and in Rus-
sia these contacts occur around 1 or 2 times per month 
(Goodrich et al. 2010). In other tiger populations where 
tigers occupy smaller home ranges, and occur in high-
er densities, these interactions are likely to be more fre-
quent, potentially increasing the rate of tiger-to-tiger 
transmission. 

In the Russian Far East domestic dogs occur at com-
paratively low densities compared to other parts of the 
world. Due to harsh climatic conditions, feral dog pop-
ulations are almost non-existent, with most animals re-
lying on provisioning by humans for survival. Based on 
2010 census data there were almost 2 million people in 
Primorskii Krai, of which more than 75% resided in ur-
ban centers and were, therefore, unlikely to come into 
contact with tigers. The remaining population is sparse-
ly distributed across the landscape, at mean densities as 
low as 2.83 people/km2. Based on preliminary estimates 
of human : dog ratios, this would equate to a mean den-
sity of approximately 5.10 dogs/km2, dramatically lower 
than the dog density of 719 dogs/km2  recorded in Ma-
harashtra, India (Belsare & Gompper 2013), suggesting 
that the contribution of domestic dogs to the CDV res-
ervoir may be much more important in other parts of the 
tiger range.

OTHER FACTORS POTENTIALLY 
INFLUENCING CANINE DISTEMPER 
VIRUS ECOLOGY IN RUSSIA

Due to the relative fragility of CDV virion to envi-
ronmental conditions (e.g. heat, desiccation and ultravi-
olet radiation), transmission is typically thought to re-
quire close contact between infected individuals (Green 
& Appel 2006). However, considering the extreme cold 
of the Russian winter, viability could be prolonged, with 
the virus persisting for extended periods outside the 
host, raising the potential for indirect modes of trans-
mission. Most local carnivore species will scavenge 
from carcasses in the forest, including tiger kills. Sev-
eral carnivores, particularly canids, are known to scent 
mark, urinate or defecate on or around food (Goszcyns-

ki 1990), and as CDV is shed in both feces and urine, 
and as the virus has a half life of 9–11 days at 4°C (Appel 
1987), contaminated carcasses could remain infectious 
for an extended period. A similar mechanism could fa-
cilitate indirect transmission between tigers, through use 
of urine scent marks on trees and landmarks that are reg-
ularly visited by territorial tigers of both sexes, as well 
as non-territory holders that may be passing through.

Although other carnivore species represent the most 
likely source of CDV infection for tigers, it should be 
noted that the virus has been associated with infections 
in non-carnivores, including Artiodactyls (Appel et al. 
1991; Noon et al. 2003; Kameo et al. 2012). An out-
break of CDV in collared peccaries, Tayassu tajacu, in 
Arizona was associated with high mortality (Appel et al. 
1991), and the virus was found to be common and enzo-
otic in the population (Noon et al. 2003). While such a 
severe clinical syndrome has not been recorded in oth-
er ungulates, viraemia has been demonstrated in domes-
tic pigs following experimental exposure (Appel et al. 
1974), and antibodies to CDV (indicating prior expo-
sure) were found in 11/41 wild boar, Sus scrofa, and 2/5 
sika deer, Cervus nippon, tested in Japan (Kameo et al. 
2012). Amur tigers prey on boar or deer with far greater 
frequency than carnivore species. While these ungulates 
may be unlikely contributors to a reservoir, they could 
enhance effective contact between tigers and the reser-
voir. A potential scenario could arise if wild boar were 
to contract subclinical infections when scavenging the 
carcasses of infected carnivores, and transmit the virus 
when subsequently predated by a tiger. Such a scenario 
remains unsubstantiated, but worthy of study.

POTENTIAL CONTROL MEASURES
Options for managing the impact of CDV infections 

on tiger populations will depend on the structure of the 
local reservoir, the mechanism of viral maintenance and 
the source of infection for the tigers. Intervention strat-
egies for managing disease in wildlife are often expen-
sive, and so it is important that control measures are 
weighed against the risk that CDV represents to the ti-
ger population, are kept proportional and are achievable 
(Woodroffe 1999). In principal, potential management 
strategies could be directed at the control of disease in 
the target tiger population, at blocking transmission be-
tween the target and source population, or at the mainte-
nance population(s) that contribute to the virus reservoir 
(Haydon et al. 2002). Each of these strategies requires 
progressively more understanding of the reservoir struc-
ture to ensure confidence of success. 
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Strategies directed at target populations could theo-
retically include treatment of infected individuals or im-
munization (Woodroffe 1999). At present, antiviral ther-
apies are of limited use in treating CDV, although the 
development of pharmaceuticals that block the RNA 
polymerase enzymes utilized during CDV replication 
could lead to applications in the treatment of affected 
individuals (Krumm et al. 2014). This is unlikely to rep-
resent a solution in the Russian context, where there is 
a low probability of encountering infected tigers, but 
could be considered in higher density populations that 
can be monitored more closely. 

Contemporary vaccines fall into two main catego-
ries: modified live vaccines (MLV [grown on canine 
or avian kidney cell lines]); and recombinant vaccines 
that use a canarypox vector to present CDV antigens to 
the immune system. Each of these has innate advantag-
es and disadvantages. While MLVs can induce a strong 
and long-lasting immunity in many species, older MLVs 
(particularly those derived from canine cell culture such 
as Rockborn or Snyder Hill strains) can cause sickness 
and death in select taxa (McCormick 1983; Montali et 
al. 1983). New generation MLVs have been used suc-
cessfully in a limited trial in lions (Kock et al. 1998), 
and offer potential for use in tigers. However, it would 
be important to verify their safety and immunogenicity 
in captive tigers before their use was proposed in a wild 
population. Recombinant vaccines are safer, but produce 
a less pronounced immune response that requires multi-
ple doses to induce life-long immunity. One major dis-
advantage of both vaccine classes is that they are only 
available in injectable form, presenting a major chal-
lenge for delivery to most free-ranging tigers.

Strategies to block transmission from the reservoir 
to tiger populations are limited, particularly if wildlife 
constitute an important source of infection. Measures to 
reduce dog predation, such as preventing access to tiger 
habitat, could be beneficial in theory, but are unlikely to 
be socially acceptable where licensed hunters extensive-
ly use dogs, as they do in the Russian Far East. 

Attempts to control CDV in the reservoir require a 
detailed understanding of maintenance host identity. Po-
tential strategies include measures to reduce the density 
of maintenance populations, or to increase their immune 
status. Vaccination has been very effective in controlling 
CDV among domestic dogs in many developed coun-
tries, but may be less successful where a large propor-
tion of the dog population is free-roaming and cannot be 
restrained (Belsare 2013). Strategies that target unvac-
cinated puppies might be more successful, as older dogs 

are more likely to have encountered the virus, and may 
be less important to CDV circulation (Belsare 2013). 
Reduction of dog populations through responsible own-
ership combined with vaccination of puppies might have 
the greatest chance of success. However, in situations 
where wildlife are important contributors to CDV, main-
tenance control will be extremely difficult, as the lack of 
an oral vaccine, and low efficacy and ethical issues as-
sociated with wildlife population control prohibit man-
agement of CDV in a wild reservoir (Woodroffe 1999).

CRITICAL STEPS NEEDED TO ASSESS 
AND MONITOR THE THREAT OF 
CANINE DISTEMPER VIRUS

As CDV is known from all countries where tigers oc-
cur, the virus represents a potential threat to wild tigers 
throughout their range. While the diversity of CDV sus-
ceptible hosts may vary across tiger range countries, 
abundant populations of domestic dogs and/or wild car-
nivores, acting alone or in concert, could represent a 
CDV reservoir, and source of infection for tigers. Wild-
life managers and veterinarians in tiger range coun-
tries should be encouraged to introduce the following 
measures as a first step to assess the risk that CDV rep-
resents for their tiger populations:  
1. Recognize and diagnose clinical cases of CDV in ti-
gers when they occur: CDV should be considered among 
the differential diagnoses for any tiger that displays be-
havioral or neurological abnormalities. Previous cas-
es of CDV in tigers have presented with some or all of 
the following: fearlessness, sensory deficits (e.g. blind-
ness), ataxia and or muscular tremors, as well as gener-
al poor body condition. Behavioral changes, particular-
ly loss of fear, may predispose animals to situations of 
human–tiger conflict. Suspected cases can be confirmed 
through detection of genetic sequences specific to CDV 
(e.g. using RT-PCR or equivalent techniques). Post mor-
tem samples such as brain tissue has the greatest diag-
nostic value during the later stages of infection when 
infected tigers are likely to present, but other samples 
that may facilitate diagnosis include lymph node, lung, 
spleen, bladder, urine and whole blood (or fractionated 
blood containing leucocytes such as buffy coat). Confir-
mation of ante mortem cases can be more challenging, 
as virus may no longer be detectable in the respiratory 
tract or circulatory system by the time animals present. 
In such cases detection of virus in conjunctival or respi-
ratory swabs, whole blood or urine would be diagnostic, 
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but negative results need not imply an absence of CDV 
infection.
2. Collect baseline data on the health of wild tigers: Ev-
ery effort should be made to take full advantage of op-
portunities to collect samples from live or dead tigers. 
Collection of at least minimal sample sets including se-
rum should take place whenever tigers are handled 
(whether healthy or sick), and post mortem examina-
tions should be performed (including collection of brain 
tissue) whenever carcasses are found. Samples need not 
be analyzed immediately, particularly where laborato-
ry resources are limited, but should be archived in se-
cure facilities and be clearly labeled, sufficient to link 
material to corresponding sampling data. Appropriate 
storage includes freezing at or below −20 °C (for se-
rum, fresh tissue and samples stored in media for main-
taining nucleic acid such as RNA later) or maintaining 
at room temperature (for tissues fixed in 10% formalin). 
It should be emphasized that these are minimal sample 
sets that would be sufficient to detect antibodies to CDV 
(indicating prior exposure) or diagnose active CDV in-
fections. More comprehensive sets of diagnostic sam-
ples would enable a more extensive assessment of tiger 
health. However, it is recognized that those involved in 
the handling of live or dead tigers often face a variety of 
constraints, including access to supplies and cold stor-
age facilities, expertise and available time. Therefore, 
we encourage wildlife managers to adapt protocols, and 
ensure adequate supplies are available to take full ad-
vantage of sampling opportunities in their circumstanc-
es.

In the event that CDV is detected in tigers in other ar-
eas, further research would be required to assess the risk 
that this represents at a population level. This could in-
clude epidemiological modeling, and research direct-
ed at the reservoir to determine species composition 
and dynamics of CDV circulation. Such research would 
be vital to assessing the need for any intervention, and 
to identify control strategies that might be appropriate. 
However, ultimately, due to the problems inherent in the 
available control methods, and the limitations of the vi-
rus itself to spread, the most viable management strat-
egy would be to maintain tigers in large and inter-con-
nected populations that are able to withstand CDV 
outbreaks should they occur. This recommendation, of 
course, is in concordance with existing conservation 
strategies for most wildlife populations.

ACKNOWLEDGMENTS
We would like to thank the Morris Animal Founda-

tion, Zoo Boise, and the Biotechnology and Biologi-
cal Sciences Research Council for their generous sup-
port of the project. In addition, none of this work would 
have been possible without the continued partnership 
of the Sikhote-Alin Biosphere Zapovednik (Director D. 
Yu. Gorskhov), Lazovskii Zapovednik (Director A. A. 
Laptev) and the Russian Ministry of Natural Resources. 
Thanks also to V. Keahey (In-Sync Exotics) for insights 
into the epidemiology of CDV.

REFERENCES
Alexander KA, McNutt JW, Briggs MB et al. (2010). 

Multi-host pathogens and carnivore management in 
southern Africa. Comparative Immunology, Microbi-
ology and Infectious Diseases 33, 249–65. 

Appel MJ, Sheffy B, Percy D, Gaskin J (1974). Canine 
distemper virus in domestic cats and pigs. American 
Journal of Veterinary Research 35, 803–6.

Appel MJ (1987). Canine Distemper Virus. In: Appel 
MJ, ed. Virus Infections of Carnivores. Elsevier Sci-
ence Publishers, Amsterdam, the Netherlands, pp. 
133–59.

Appel MJ, Reggiardo C, Summers BA et al. (1991). Ca-
nine distemper virus infection and encephalitis in ja-
velinas (collared peccaries). Archives of Virology 119, 
147–52.

Appel MJ, Yates R, Foley G et al. (1994). Canine dis-
temper epizootic in lions, tigers, and leopards in 
North America. Journal of Veterinary Diagnostic In-
vestigation 6, 277–88. 

Bartlett MS (1960). The Critical Community Size for 
Measles in the United States. Journal of the Royal 
Statistical Society: Series A (General) 123, 37–44.

Belsare AV (2013). Diseases of free-ranging dogs: Im-
plications for wildlife conservation in India. Current 
Conservation 7. [Cited 5 Jun 2014.] Available from 
URL: http://www.currentconservation.org/?q=is-
sue/7.4. 

Belsare AV, Gompper ME (2013). Assessing demo-
graphic and epidemiologic parameters of rural dog 
populations in India during mass vaccination cam-
paigns. Preventive Veterinary Medicine 111, 139–46.

Biek R, Zarnke RL, Gillin C, Wild M, Squires JR, Poss 
M (2002). Serologic survey for viral and bacterial in-
fections in western populations of Canada lynx (Lynx 
canadensis). Journal of Wildlife Diseases 38, 840–5. 



341

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Canine distemper virus in tigers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© 2015 International Society of Zoological Sciences, Institute of Zoology/
    Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd

Blythe LL, Schmitz JA, Roelke M, Skinner S (1983). 
Chronic encephalomyelitis caused by canine-distem-
per virus in Bengal tiger. Journal of the American 
Veterinary Medical Association 183, 1159–62.

Burtscher H, Url A (2007). Evidence of canine distem-
per and suggestion of preceding parvovirus-myocar-
ditis in a Eurasian badger (Meles meles). Journal of 
Zoo and Wildlife Medicine 38, 139–42.

Chundawat RS, Habib B, Karanth U et al. (2011). Pan-
thera tigris. In: The IUCN Red List of Threatened 
Species, Version 2013.2. [Cited 24 Mar 2014.] Avail-
able from URL: www.iucnredlist.org.

Dales Nava AF, Cullen L, Sana DA et al. (2008). First 
evidence of canine distemper in Brazilian free-rang-
ing felids. EcoHealth 5, 513–8. 

Daoust PY, McBurney SR, Godson DL, van de Bildt 
MWG, Osterhaus A (2009). Canine distemper vi-
rus-associated encephalitis in free-living Lynx (Lynx 
canadensis) and Bobcats (Lynx rufus) of eastern Can-
ada. Journal of Wildlife Diseases 45, 611–24. 

Deem SL, Spelman LH, Yates RA, Montali RJ (2000). 
Canine distemper in terrestrial carnivores: A review. 
Journal of Zoo and Wildlife Medicine 31, 441–51.

Fanshawe JH, Frame LH, Ginsberg JR (1991). The wild 
dog – Africa’s vanishing carnivore. Oryx 25, 137–46.

Fiorello CV, Noss AJ, Deem SL, Maffei L, Dubovi EJ 
(2007). Serosurvey of small carnivores in the Bolivi-
an Chaco. Journal of Wildlife Diseases 43, 551–7. 

Fix AS, Riordan DP, Hill HT, Gill MA, Evans MB 
(1989). Feline panleukopenia virus and subsequent 
canine distemper virus infection in two snow leop-
ards (Panthera uncia). Journal of Zoo and Wildlife 
Medicine 20, 273–81.

Gilbert M, Miquelle DG, Goodrich JM et al. (2014). Es-
timating the potential impact of canine distemper vi-
rus on the Amur tiger population (Panthera tigris al-
taica) in Russia. PLoS ONE 9, e110811.

Goodrich JM, Miquelle DG, Smirnov EN, Kerley LL, 
Quigley HB, Hornocker MG (2010). Spatial structure 
of Amur (Siberian) tigers (Panthera tigris altaica) on 
Sikhote-Alin Biosphere Zapovednik, Russia. Journal 
of Mammalogy 91, 737–48.

Goodrich JM, Quigley KS, Lewis JCM et al. (2012). 
Serosurvey of free-ranging Amur tigers in the Rus-
sian Far East. Journal of Wildlife Diseases 48, 186–9.

Goszcynski J (1990). Scent marking by red foxes in 
central Poland during the winter season. Acta Therio-
logica 35, 7–16.

Gould DH, Fenner WR (1983). Paramyxovirus-like nu-
cleocapsids associated with encephalitis in a captive 
Siberian tiger. Journal of the American Veterinary 
Medical Association 183, 1319–22.

Green CE, Appel MJ (2006). Canine distemper. In: 
Green CE, ed. Infectious Diseases of the Dog and 
Cat. Elsevier, St Louis, Missouri, pp. 25–41.

Haydon DT, Cleaveland S, Taylor LH, Laurenson MK 
(2002). Identifying reservoirs of infection: A concep-
tual and practical challenge. Emerging Infectious Dis-
eases 8, 1468–73.

Kameo Y, Nagao Y, Nishio Y et al. (2012). Epizootic 
canine distemper virus infection among wild mam-
mals. Veterinary Microbiology 154, 222–9. 

Kenney J, Allendorf FW, McDougal C, Smith JL (2014). 
How much gene flow is needed to avoid inbreeding 
depression in wild tiger populations. Proceedings of 
the Royal Society B 281, 20133337.

Kock R, Chalmers WS, Mwanzia J et al. (1998). Canine 
distemper antibodies in lions of the Masai Mara. The 
Veterinary Record 142, 662–5. 

Konjevic D, Sabocanec R, Grabarevic Z et al. (2011). 
Canine distemper in Siberian tiger cubs from Zagreb 
ZOO: Case report. Acta Veterinaria Brno 80, 47–50. 

Krumm SA, Yan D, Hovingh ES et al. (2014). An oral-
ly available, small-molecule polymerase inhibitor 
shows efficacy against a lethal morbillivirus infection 
in a large animal model. Science Translational Medi-
cine 6, 232ra52. 

Ludlow M, Rennick LJ, Nambulli S, de Swart RL, 
Duprex PW (2014). Using the ferret model to 
study morbillivirus entry, spread, transmission and 
cross-species infection. Current Opinion in Virology 
4, 15–23. 

McCormick AE (1983). Canine distemper in African 
cape hunting dogs (Lycaon pictus): Possibly vaccine 
induced. Journal of Zoo Animal Medicine 14, 66–71.

Meli ML, Simmler P, Cattori V et al. (2010). Impor-
tance of canine distemper virus (CDV) infection in 
free-ranging Iberian lynxes (Lynx pardinus). Veteri-
nary Microbiology 146, 132–7. 

Miquelle DG, Smirnov EN, Quigley HG, Hornocker 
MG, Nikolaev IG, Matyushkin EN (1996). Food hab-
its of Amur tigers in the Sikhote-Alin Zapovednik 
and the Russian Far East, and implications for con-
servation. Journal of Wildlife Research 1, 138–47.

Montali RJ, Bartz CR, Teare JA, Allen JT, Appel MJG, 
Bush M (1983). Clinical trials with canine distemper 



342

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

M. Gilbert et al.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© 2015 International Society of Zoological Sciences, Institute of Zoology/
    Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd

vaccines in exotic carnivores. Journal of the Ameri-
can Veterinary Medical Association 183, 1163–7.

Munson L, Marker L, Dubovi E, Spencer JA, Evermann 
JF, O’Brien SJ (2004). Serosurvey of viral infections 
in free-ranging Naminian Cheetahs (Acinonyx juba-
tus). Journal of Wildlife Diseases 40, 23–31. 

Munson L, Terio KA, Kock R et al. (2008). Climate ex-
tremes promote fatal co-infections during canine dis-
temper epidemics in African lions. PLoS ONE 3, 
e2545. 

Nagao Y, Nishio Y, Shimoda H et al. (2012). An out-
break of canine distemper virus in tigers (Panthera 
tigris): Possible transmission from wild animals to 
zoo animals. Journal of Veterinary Medical Science 
74, 699–705.

Naydenko SV, Esaulova NV, Lukarevsky VS et al. 
(2012). Occurrence of infectious diseases in Amur 
tigers in the south of their range. In: Seryodkin IV, 
Miquelle DG, eds. Diseases and Parasites of Wildlife 
in Siberia and the Russian Far East. Dalnauka, Vlad-
ivostok, pp. 32–5.

Noon TH, Heffelfinger JR, Olding RJ, Wesche SL, Reg-
giardo C (2003). Serologic survey for antibodies to 
canine distemper virus in collared peccary (Tayas-
su tajacu) populations in Arizona. Journal of Wildlife 
Diseases 39, 221–3.

Ohishi K, Suzuki R, Maeda T et al. (2014). Recent host 
range expansion of canine distemper and variation in 
its receptor, the signaling lymphocyte activation mol-
ecule, in carnivores. Journal of Wildlife Diseases 50, 
596–606. 

Origgi FC, Sattler U, Pilo P, Waldvogel AS (2013). Fatal 
combined infection with canine distemper virus and 
orthopoxvirus in a group of Asian marmots (Marmota 
caudata). Veterinary Pathology 50, 914–20.

ProMED (2014). Canine distemper–India: Tiger Ar-
chive Number 20140114.2172144. [Cited 13 Feb 
2014.] Available from URL:  http://www.promed-
mail.org/?archiveid=20140114.2172144.

Quigley KS, Evermann JF, Leathers CW et al. (2010). 
Morbillivirus infection in a wild Siberian tiger in the 
Russian Far East. Journal of Wildlife Diseases 46, 
1256.

Robinson HS, Goodrich JM, Miquelle DG, Miller CS, 
Seryodkin IV (2015). Mortality of Amur tigers: The 
more things change, the more they stay the same. In-
tegrative Zoology 10, 344–53.

Roelke-Parker ME, Munson L, Packer C et al. (1996). 
A canine distemper virus epidemic in Serengeti lions 
(Panthera leo). Nature 379, 441–5.

Sanderson E, Forrest J, Loucks C et al. (2006). Setting 
Priorities for the Conservation and Recovery of Wild 
Tigers 2005–2015. A Technical Report. WCS, WWF, 
Smithsonian, and NFWF-STF, New York and Wash-
ington, DC.

Seimon TA, Miquelle DG, Chang TY et al. (2013). Ca-
nine distemper virus: An emerging disease in wild 
endangered Amur tigers (Panthera tigris altaica). 
mBio 4, e00410–3.

Soutyrina SV, Riley MD, Goodrich JM, Seryodkin IV, 
Miquelle DG (2013). A population estimate of Amur 
tigers using camera traps. Sikhote-Alin State Nature 
Biosphere Reserve, Wildlife Conservation Society, 
Pacific Geographic Institute, Russian Academy of 
Sciences Far Eastern Branch, Dalnauka, Vladivostok.

Sun Z, Li A, Ye H, Shi Y, Hu Z, Zeng L (2010). Natural 
infection with canine distemper virus in hand-feeding 
Rhesus monkeys in China. Veterinary Microbiology 
141, 374–8. 

Thalwitzer S, Wachter B, Robert N et al. (2010). Sero-
prevalences to viral pathogens in free-ranging and 
captive cheetahs (Acinonyx jubatus) on Namibian 
Farmland. Clinical and Vaccine Immunology: CVI 
17, 232–8. 

Thorne ET, Williams ES (1988). Disease and endan-
gered species: The black-footed ferret as a recent ex-
ample. Conservation Biology 2, 66–74. 

Timm SF, Munson L, Summers BA et al. (2009). A sus-
pected canine distemper epidemic as the cause of 
a catastrophic decline in Santa Catalina Island fox-
es (Urocyon littoralis catalinae). Journal of Wildlife 
Diseases 45, 333–43. 

Uhart MM, Rago MV, Marull CA, Ferreyra HDV, Perei-
ra JA (2012). Exposure to selected pathogens in 
Geoffroy’s cats and domestic darnivores from Cen-
tral Argentina. Journal of Wildlife Diseases 48, 899–
909. 

Viana M, Cleaveland S, Matthiopoulos J et al. (2015). 
Dynamics of a morbillivirus at the domestic–wildlife 
interface: Canine distemper virus in domestic dogs 
and lions. PNAS 112, 1464–9.

Wack R (2003). Felidae. In: Miller RE, Fowler ME, eds. 
Zoo and Wild Animal Medicine. Elsevier Saunders, 
St. Louis, pp. 492.



343

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Canine distemper virus in tigers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© 2015 International Society of Zoological Sciences, Institute of Zoology/
    Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd

Walston J, Robinson JG, Bennett EL et al. (2010). 
Bringing the tiger back from the brink–The six per-
cent solution. PLoS Biology 8, e1000485.

Williams ES (2001). Canine distemper. In: Williams 
ES, Barker IK, eds. Infectious Diseases of Wild Mam-
mals, 3rd edn. Iowa State University Press, Ames, 
Iowa, pp. 50–9.

Woodroffe R (1999). Managing disease threats to wild 
mammals. Animal Conservation 2, 185–93. 

Yoshikawa Y, Ochikubo F, Matsubara Y et al. (1989). 
Natural infection with canine distemper virus in a 
Japanese monkey (Macaca fuscata). Veterinary Mi-
crobiology 20, 193–205.

Gilbert M, Soutyrina SV, Seryodkin IV et al. (2015). Canine distemper virus as a threat to wild tigers in Russia 
and across their range. Integrative Zoology 10, 329–43. 

Cite this article as:



  255 

Appendix II. Confirmed and suspected cases of 
canine distemper virus in tigers and other large 
felids in the Russian Far East 

 

PT61/Pt 2004, ‘Morka’: 

In November 2003, a tigress captured in the village of Pokrovka, Khabarovskii Krai 

(46.69°N, 134.03°E, Figure II) was taken into care but died 5 weeks later (Quigley et 

al.2010). Although ambulatory at the time of capture, this tigress was non-responsive to 

stimuli and unafraid of humans. She was later confirmed as the first case of CDV in a wild 

tiger (Seimon et al.2013). As part of the current project, further RNA was extracted from 

formalin-fixed paraffin embedded (FFPE) brain tissue from PT61/Pt 2004, and leading to 

the reconstruction of approximately 99% of the full CDV genome using Illumina methods 

(Chapter 4). The sequence obtained from this tiger has been submitted to GenBank 

(KX774415).    

 

PT90/Pt 2010-1/T16, ‘Ivan’: 

This tiger was an 11-year-old male, who occupied a territory in Sikhote-Alin Biosphere 

Zapovednik (SABZ) that encompassed that of PT56 (see below). On 31 December 2009, 

PT90 approached and killed a local fisherman close to a group of houses 10 km west of the 

village of Ternei. In common with other CDV cases, PT90 displayed an unusual lack of 

fear, remaining in the open until he was shot and killed the following day. Although no 

brain tissue was collected following his death, approximately 3.6% of the CDV genome 

was sequenced from a (FFPE) sample of lymph node using Illumina sequencing (Chapter 

4). The detection of CDV in this case raises questions about the possible role that CDV 

might have in precipitating incidents of human-tiger conflict.  

 

Pt 2010-2:  

During February 2010, a 3–4-year-old male tiger was captured near the village of 

Aleksayevka, Primorskii Krai (43.56°N, 132.00°E). This tiger was moderately poor body 
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Figure II.I. Map illustrating the location of clinical cases of canine distemper virus in 
Panthera spp. In Primorskii Krai, Russia. 
 

condition when first encountered, and exhibited a lack of fear of vehicles and people. A 

video of the tiger’s capture is available here: http://tinyurl.com/h7yvljb. Following capture, 

the tiger’s condition deteriorated, he became unresponsive to stimuli and subsequently died 

while in care. A 114 bp fragment of the CDV P-gene was sequenced from this tiger, 

confirming the diagnosis (Seimon et al.2013). 

 

PT56/Pt 2010-3/T02, ‘Galia’: 

This 8.5-year-old tigress held a territory along the southern border of SABZ. The tigress 

had been captured in 2002 and 2005 as part of a telemetry study, yet no CDV antibodies 

were detected from routine samples. She was subsequently recaptured on 24 March 2010, 

by which time CDV antibodies were circulating (with a virus neutralization titre of 1:256 

measured at the Washington Animal Disease Diagnostic Laboratory, Pullman, WA, USA). 
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In view of subsequent events, and the strong protective immunity that develops in animals 

that survive infection, it is likely that PT56 was already infected by March 2010. 

Antibodies to CDV appear after 10 to 20 days post-infection in dogs (Greene & Appel, 

2006), which if comparable in tigers would suggest an infection lasting at least 80 to 90 

days in this tigress. By 1 May, PT56 localized her movements, and (as was later 

confirmed) gave birth to a litter of three cubs. Although PT56 had proven to be a typically 

attentive mother when raising her three prior litters, on this occasion her behaviour was 

unusual, leaving the den for several days at a time before finally abandoning her cubs 

entirely on 17 May. She was subsequently observed at a nearby military outpost, before 

entering the village of Ternei, where she was shot on 1 June 2010 to prevent injury to local 

residents. The presence of CDV was confirmed in brain tissue (yielding a 278 bp fragment 

of the HA-gene, GenBank accession number KC579362), and demonstration of consistent 

pathology (Seimon et al.2013). All 3 of her cubs consequently died. Evidence of CDV was 

not found in samples collected from one of those cubs, although decomposition may have 

hampered test sensitivity. 

 

PT56 was recorded in association with PT90 in the autumn of 2009. Assuming that PT90 

had sired the litter of cubs born to PT56 during May, then mating must have occurred just a 

few days prior to his death (given a gestation period of 98–111 days [Wack, 2003]). In 

captive tigers mortality from CDV usually occurs within days or weeks of developing 

clinical signs (Appel et al.1994; Gould and Fenner, 1983; Konjević et al.2011; Nagao et 

al.2012, V. Keahey, personal communication 2014), but the length of the refractive period 

(before clinical disease is evident) remains unknown, and a delayed onset may be possible 

(Blythe et al.1983). Therefore, it is conceivable that PT56 contracted her infection through 

contact with PT90. 

 

Khabarovsk highway tiger: 

Video footage of a tiger behaving in a similar dissociative manner to confirmed cases of 

CDV in tigers was taken along the Vladivostok-Khabarovsk highway between the towns of 

Vyazemski and Bikin, Khabarovskii Krai during the spring of 2010 

(http://tinyurl.com/las2yt7) Although this animal later died in care, no samples were 

available for analysis; therefore, CDV could not be confirmed in this instance. 
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PT79 

This case was confirmed during the present study, based on RT-PCR analysis of an 

archived blood sample collected 2006 in SABZ (Chapter 4). The HA-gene sequence from 

this tiger has been submitted to GenBank, with the accession number KX708720. The tiger 

was one of three female 13 month old dependent cubs, and was sampled in SABZ on 13 

October 2006. Her sample was selected for RNA extraction based on the presence of CDV 

neutralizing antibodies in serum (titre 1:128). Another sibling (PT80) was also found to 

have a CDV antibody titre of 1:256, but no virus could be detected in her serum. A whole 

blood sample from the third sibling (PT81) tested weakly positive for a 114 bp fragment of 

the P-gene (with a cycle threshold value of 37.5 using primers CDVF4 and CDVR3). This 

sample had been preserved in Queen’s lysis buffer (Seutin et al.1991), and attempts to 

amplify longer fragments were unsuccessful. None of the three sisters exhibited the 

dissociative behaviour that has characterized prior CDV cases in Russian tigers. However, 

during late 2006 all three cubs were frequently observed close to a main road, and 

appeared unconcerned by people and vehicles. Attempts at hazing the siblings were largely 

unsuccessful, and all three eventually disappeared, and were assumed to have been killed 

by poachers (with last known locations recorded on 24 February 2007 for PT79, 20 

November 2007 for PT80 and 26 February 2008 for PT81). Their mother, PT35 also 

disappeared during 2007, however at 14 years of age, her disappearance could have been 

due to natural senescence. 

 

Khasanskii Tiger 2013: 

This case was diagnosed during the present study based on RT-PCR analysis of frozen 

brain tissue. The HA-gene sequence from this tiger has been submitted to GenBank, with 

the accession number KX708726. The case involved a young male of approximately two 

years of age, which was found dead on 22 November 2013, in the district of Khasanskii in 

Southwest Primorskii (N43.06245 E131.35773). The tiger had sustained a gunshot wound, 

fracturing a foreleg, and died while trying to negotiate a river. Had CDV not been detected 

in this case, the tiger’s death would have been attributed entirely to events related to the 

gunshot wound. Like PT90, this case raises the possibility that CDV may be contributing 

to incidents of human-tiger conflict. Although the tiger had been shot, the recovery of his 

body suggests that this was not a poaching incident.  
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Far Eastern leopard 2015: 

On 8 May 2015, a young female leopard of approximately two years of age was found 

along a road close to the village of Bamburovo in Khasanskii district in Southwest 

Primorskii (N42.95539 E131.35150). The leopard was in poor body condition, and 

unresponsive to her surroundings. Despite several weeks of supportive care, the leopard’s 

condition deteriorated, with progressive ataxia, anorexia and seizures, and on 25 May the 

leopard was euthanized. This case constitutes the first report of CDV in this critically 

endangered leopard subspecies. Preliminary sequencing of frozen brain tissue has 

produced an 528 bp fragment of the HA-gene. Further work is in progress to obtain the full 

HA-gene sequence, and a manuscript is in preparation. 
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Appendix IV. State Veterinary Inspection, 
Primorskii Krai approval letters 

 

Letters of support permitting the collection of health data and samples from domestic dogs 

in Primorskii Krai, 2012-2014. 
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Appendix V. Demography of owned cats in 
Primorskii Krai 

 

Introduction 

Like dogs, domestic cats are also commonly kept in Primorskii Krai. While domestic cats 

show a low susceptibility to CDV, and are unable to transmit infections (Appel et al.1974), 

they do share a range of other pathogens with tigers. Since co-infections are known to play 

a role in the clinical course of CDV infections in Panthera spp. (Munson et al.2008; 

Silinski et al.2003; Fix et al.1989), it is possible that domestic cats may influence the 

outcome of tiger infections in other ways. The main objective of the household surveys 

described in Chapter 3 was to investigate the ownership patterns of domestic dogs that 

impact CDV maintenance, and opportunities for transmission with wildlife. However, the 

surveys also represented an opportunity to collect baseline information on domestic cat 

ownership in Primorskii Krai as a precursor to wider assessments of domestic cat health. 

 

Domestic cats show a greater degree of independence than dogs, and are able to survive 

without relying on people for provisioning. While this study concentrated on owned cats, it 

is acknowledged that this overlooks a population of unknown size that is able to survive 

with limited or no support from people.  

 

Methods 

Data were collected in conjunction with household questionnaire surveys described in 

Chapter 3 (full questionnaires are provided in Appendices V, VII and VIII). A more 

limited set of data was obtained for individual cats, including age, sex, whether cats were 

neutered, reproductive history of females, vaccination history and whether cats were 

allowed to roam outside. Owners were also asked about details of any dogs and cats that 

died within the previous 12 months, including their age, sex and cause of death. Total 

numbers of cats in each settlement, study area and the whole of Primorskii were estimated 

using the methods described for dogs (Chapter 3). 
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Results 

Median human to cat ratios were calculated as 2.04 in villages (SD=1.69 (n=22), 2.30 in 

towns (SD=1.43 (n=3), 6.19 in the only large town surveyed (n=1), and 3.87 in the city of 

Ussuriysk. This equated to an estimated population of 4,032 cats, (CI: 3,439-4,742) in the 

vicinity of SABZ, 5,917 cats, (CI: 5,159-6,880) around Lazovskii, and 20,777 cats, (CI: 

19,183-22,494) in Southwest Primorskii (V.I). However, it should be noted that these 

figures only represent owned cats, and an unknown number of feral cats may survive 

without human provisioning. A total of 55.9%, residences surveyed were cat owned 

households (COHH, n=2,576), representing 28.4% of apartments and 21.6% of cottages. 

The mean number of cats per COHH was (SD=1.11, n=1,442). The majority of owned cats 

had free access to roam out of doors (90.89 %, n=2,383).  

 

Figure V.I. An age pyramid illustrating the frequency distribution of cats at yearly age 
intervals, generated using the R package ‘pyramid’ (Nakazawa, 2014). 
 

The mean age of male cats was estimated to be 3.57 years (SD=3.4, n=1,261), and was 

4.22 years for female cats (SD=3.82, n=1,049). The expected lifespan of cats at birth 

(mean age at death) was 2.6 years, and cats surviving to one year of age have a mean life 

expectancy of 5.57 years. The sex ratio of male:female cats was skewed toward males at 

1.21:1, although this was less marked than the skewed sex ratio recorded in the dog 
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population (Figure V.I). Only 6.1% of males (n=1,282), and 5.3% of females (n=1,067) 

had been sterilized. Owners reported the breeding status for 1,045 queens, of which 885 

were considered of breeding age (taken to be 7 months or older). There were 599 queens 

who bred in the last year, representing 67.7% of the female population of breeding age. 

These queens had a total of 1,061 litters. Mean litter size was 3.6 kittens (SD=1.3, n=605). 

When extrapolated over the whole population of females in the survey, this equated to 

approximately 3,879 kittens in the previous year, which equated to a per capita breeding 

rate of 1.59 kittens per cat per year.  

 

There were 233 cats reported to have died in the previous year. This equated to a per capita 

mortality rate of 0.1 cats per cat per year, which given the productivity estimates is likely 

to grossly underestimate true mortality. A possible explanation for this is the reclusive 

nature of cats at the end of life, as owners reported that 32.2% of cats that were assumed to 

have died in the previous year had either disappeared, or died of unknown causes (n=233). 

Other common causes of death were road accident (20.6%), anthropogenic causes (12.0%), 

senescence (11.6%), and sickness (10.7%). 

 

Information on vaccination history was provided for 2,386 cats, of which owners claimed 

that 14.4% had received vaccinations. However, owners were unable to provide details of 

products given to 52.8% of vaccinated cats, and based on their responses many of these 

may have been other medications such as antibiotics. Of remaining treated cats, 39.9% had 

received vaccinations for rabies, 2.9% for feline respiratory complex (containing feline 

viral rhinotracheitis, feline calicivirus and Chlamydophila felis) and 4.4% received 

medications other than vaccines.    

 

Discussion 

Numbers of owned cats were comparable to the number of dogs in each of the three study 

areas. Cat ownership was notably higher than dog ownership in apartments, an effect that 

led to higher estimates than dogs at the province level. Considering the propensity of cats 

for independent survival, it is possible that additional feral populations would push this 

total even higher. Although cats are not susceptible to CDV, several features of their 

ecology in Primorskii may promote the maintenance of other pathogens to which tigers 
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may be susceptible. With little attempt at sterilization, a high proportion of female cats are 

reproductive, and produce more than three times the number of young compared to that of 

dogs. Although first year mortality will exceed that for dogs, such productivity of naïve 

and susceptible kittens will promote the transmission of acute infections. Cats are also 

afforded limited access to veterinary care in comparison to dogs, with low vaccination 

coverage doing little to hinder pathogen transmission at the population level. Almost all 

cats are permitted to roam at will beyond the confines of the household, leading to a 

greater potential for mixing compared to that of dogs. However, the typical home range 

size of owned domestic cats is relatively small (<2 Ha [Horn et al.2011]), which may limit 

their opportunity for direct contact with wildlife.  
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Appendix VI. Household questionnaire (pet-owning 
households) 

  



Some%mes:	
	

Do	you	see	un-owned	(feral)	dogs	
roaming	in	the	area?:	
Как	часто	Вы	видите	неизвестных	
собак	рядом	с	Вашим	домом?:	Иногда:	

Никогда:	

Number	of	livestock	at	property:	

Adult	(≥18y):	People	in	household:	
Количество	человек	в	доме:	

Год:	
Year:	

Время:	
Time:	

Simple	Household	Survey	Form	(Pet-owning)	
Interviewer	name:	
ФИО	опрашивающего:	 День:	

Day:	
Месяц:	
Month:	

Household	ID:	
ID	дома:	

(Northing)	
(Северная)	

(Eas%ng)	
	(Восточная)	

Address:	
Адрес:	

SeLlement:	
Населенный	

UTM:	

Residence	type:	
Вид	жилья:	

CoLage:	
Частный	дом:	

Apartment:	
Квартира:	

Other:	
Другое:	

Specify:	
Особенности:	

Взрослые	(≥18лет):	
Child	(<18y):	

Дети	(<18лет):	

Кол-во	с/х	животных	во	дворе:	
CaLle:	
К.р.с.:	

Pigs:	
Свиньи:	

Number	of	livestock	elsewhere:	
Кол-во	с/х	животных	в	округе:	

CaLle:	
К.р.с.:	

Pigs:	
Свиньи:	

Always:	
Всегда:	

Never:	

Always:	
Всегда:	

Иногда:	

Never:	
Никогда:	

Do	you	see	neighbor’s	dogs	roaming	
in	the	area?:	
Как	часто	Вы	видите	свободно	
гуляющих	соседских	собак?:	

Household	data:			Общая	информация	о	доме	и	тех,	кто	в	нем	проживает:	

Chickens:	
Куры:	

Chickens:	
Куры:	

Unknown:	
Не	знаю:	

Unknown:	
Не	знаю:	

пункт:	

Other:	
Другое:	

Other:	
Другое:	

Number	of	small	animals:	
Количество	животных:	

Dogs:	
Собак:	

Cats:	
Кошек:	

Number	of	dogs	10	yrs	ago:	
Количество	собак	10	лет	назад:	

Some%mes:	
	

	

	
Individual	dog	data:		
Данные	о	собаке:	

Please	complete	one	column	for	each	animal,	
(%ck	appropriate	boxes)	

Пожалуйста,	вносите	данные	о	каждой	
собаке	в	отдельную	колонку		

Samples	collected?		
(if	yes	then	enter	
Animal	ID)	
Были	ли	взяты	образцы?		
(если	да,	то	присвойте	
животному	ID)	

Serum:	

Мазок	из	носа:	

Мазок	крови:	

FTA	карточка:	

Animal	ID	(if	needed)	
ID	животного	(если	треб.)	

Age	
(Tick	and	specify)	

Ad.	(>3	mo.):	
Взр.	(>3	мес.):	
Juv.	(<3	mo.):	

Мол.	(<	3	мес.):	

Ad.	(>3	mo.):	
Взр.	(>3	мес.):	
Juv.	(<3	mo.):	

Мол.	(<	3	мес.):	

Ad.	(>3	mo.):	
Взр.	(>3	мес.):	
Juv.	(<3	mo.):	

Мол.	(<	3	мес.):	

Ad.	(>3	mo.):	
Взр.	(>3	мес.):	
Juv.	(<3	mo.):	

Мол.	(<	3	мес.):	

Возраст	
(отметить	и	ниже	
написать	подробно)	 Yrs/Лет	 Yrs/Лет	 Yrs/Лет	

Gender	
Пол	 Самец:	

Female:	

Yes:	

No:	

Spayed/castrated?	
Стерилизована/	
кастрирован?	

Самец:	

Female:	

Yes:	

No:	

Самец:	

Female:	

Yes:	

No:	

Самец:	

Female:	

Yes:	

No:	

Unknown:	 Unknown:	 Unknown:	 Unknown:	

Unknown:	 Unknown:	 Unknown:	 Unknown:	

Serum:	

Мазок	из	носа:	

Мазок	крови:	

FTA	карточка:	

Serum:	

Мазок	из	носа:	

Мазок	крови:	

FTA	карточка:	

Serum:	

Мазок	из	носа:	

Мазок	крови:	

FTA	карточка:	

Hun%ng	breed?	
Охотничья	ли	порода?	

No:	
Нет:	

No:	
Нет:	

No:	
Нет:	

No:	
Нет:	

Yes:	
Да:	

Yes:	
Да:	

Yes:	
Да:	

Yes:	
Да:	

Мо/Мес	 Мо/Мес	Мо/Мес	Мо/Мес	

Сыворотка:	 Сыворотка:	 Сыворотка:	 Сыворотка:	
Nasal	swab:	

	
Nasal	swab:	 Nasal	swab:	 Nasal	swab:	

Blood	slide:	 Blood	slide:	 Blood	slide:	 Blood	slide:	

Кал:	 Кал:	 Кал:	 Кал:	
Faeces:	 Faeces:	 Faeces:	 Faeces:	

FTA	card:	 FTA	card:	 FTA	card:	 FTA	card:	

Male:	 Male:	 Male:	 Male:	

Самка:	 Самка:	 Самка:	 Самка:	

Неизвестно:	 Неизвестно:	 Неизвестно:	 Неизвестно:	

Да:	 Да:	 Да:	 Да:	

Нет:	 Нет:	 Нет:	 Нет:	

Неизвестно:	 Неизвестно:	 Неизвестно:	 Неизвестно:	

Yrs/Лет	



	
	

Эвтаназия:	 Эвтаназия:	 Эвтаназия:	 Эвтаназия:	
Euthanized:	 Euthanized:	 Euthanized:	 Euthanized:	

Current	reproduc%ve	
status?	
Текущий	репродук-	
тивный	статус?	

Pregnant:	

Lacta%ng:	

Pregnant:	

Lacta%ng:	

Pregnant:	

Lacta%ng:	

Pregnant:	

Lacta%ng:	

No.	of	liLers	in	last	year?	
Кол-во	пометов	в	год?	

No.	pups	in	last	liLer?	
Кол-во	щенков	в	

Outcome	of	last	liLer?	
(indicate	no.	pups	per	
category)	
Что	произошло	со	
щенками	из	
последнего	помета?	
(отметьте	количество	
щенков	в	каждой	
категории)	

Гибель(случайно):	

Гибель(болезнь):	

Живут	в	доме:	

Unknown:	

Отдали:	

Гибель(случайно):	

Гибель(болезнь):	

Живут	в	доме:	

Unknown:	

Отдали:	

Гибель(случайно):	

Гибель(болезнь):	

Живут	в	доме:	

Unknown:	

Отдали:	

Гибель(случайно):	

Гибель(болезнь):	

Живут	в	доме:	

Unknown:	

Отдали:	

Local:	

Non-local:	

Source	of	dog?	
Откуда	была	взята	
собака?	

Specify:	
Подробности:	

Local:	

Non-local:	

Specify:	
Подробности:	

Local:	

Non-local:	

Specify:	
Подробности:	

Local:	

Non-local:	

Specify:	
Подробности:	

Reason	for	
ownership?		
(%ck	all	that	apply)	

С	какой	целью	
заведена	собака?	
(отметить	все,	что	
подходит)	

Pet:	
Питомец:	

Guard:	
Охрана:	
Hun%ng:	
Охота:	
Other:	

Другое:	

Pet:	
Питомец:	

Guard:	
Охрана:	
Hun%ng:	
Охота:	
Other:	

Другое:	

Pet:	
Питомец:	

Guard:	
Охрана:	
Hun%ng:	
Охота:	
Other:	

Другое:	

Pet:	
Питомец:	

Guard:	
Охрана:	
Hun%ng:	
Охота:	
Other:	

Другое:	
Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Other:	
Specify:	
Подробности:	

Other:	
Specify:	
Подробности:	

Other:	

Specify:	
Подробности:	

Other:	
Specify:	
Подробности:	

последнем	помете?	

Беременна:	 Беременна:	 Беременна:	 Беременна:	

Кормящая:	 Кормящая:	 Кормящая:	 Кормящая:	
Unknown:	 Unknown:	 Unknown:	 Unknown:	

Неизвестно:	 Неизвестно:	 Неизвестно:	 Неизвестно:	

Alive	(present):	 Alive	(present):	 Alive	(present):	 Alive	(present):	

Given	away:	 Given	away:	 Given	away:	 Given	away:	

Died	(accident):	 Died	(accident):	 Died	(accident):	 Died	(accident):	

Died	(sickness):	 Died	(sickness):	 Died	(sickness):	 Died	(sickness):	

Неизвестно:	 Неизвестно:	 Неизвестно:	 Неизвестно:	

Другое:	 Другое:	 Другое:	 Другое:	

Местная:	 Местная:	 Местная:	 Местная:	

Привезенная:	 Привезенная:	 Привезенная:	 Привезенная:	

Месяц:	 Месяц:	 Месяц:	 Месяц:	Год:	 Год:	 Год:	 Год:	/	 /	 /	 /	
Month:	 Month:	 Month:	 Month:	Year:	 Year:	 Year:	 Year:	

Is	dog	taken	to	forest?	
Вы	берете	собаку	в	лес?	

No:	
Нет:	

No:	
Нет:	

No:	
Нет:	

No:	
Нет:	

Yes:	
Да:	

Yes:	
Да:	

Yes:	
Да:	

Yes:	
Да:	

Specify:	
Название:	

Specify:	
Название:	

Specify:	
Название:	

Specify:	
Название:	

Никогда:	

How	owen	does	dog	
travel	beyond	the	
seLlement?	

Как	часто	собака	
уходит/вывозится	в	
другие	населенные	
пункты	(в	среднем)?	

At	least	weekly:	

At	least	monthly:	

At	least	annually:	

Никогда:	

At	least	weekly:	

At	least	monthly:	

At	least	annually:	

Никогда:	

At	least	weekly:	

At	least	monthly:	

At	least	annually:	

Никогда:	

At	least	weekly:	

At	least	monthly:	

At	least	annually:	

Most	distant	place	the	
dog	visited?	
Самое	отдаленное	место,	
посещаемое	собакой?	

Min	раз	в	неделю:	 Min	раз	в	неделю:	 Min	раз	в	неделю:	 Min	pаз	в	неделю:	

Min	раз	в	месяц:	 Min	раз	в	месяц:	 Min	pаз	в	месяц:	 Min	pаз	в	месяц:	

Min	ежегодно:	 Min	ежегодно:	 Min	eжегодно:	 Min	eжегодно:	

Never:	 Never:	 Never:	 Never:	
Реже:	 Реже:	 Реже:	 Реже:	
Rarely:	 Rarely:	 Rarely:	 Rarely:	



	
	

Household	ID:	
ID	дома:	

How	much	%me	is	the	
dog	unconfined?	
(includes	escaping)	

Как	долго	собака	
находится	за	
пределами	двора	без	
присмотра?	(	в	том	
числе	срывается	с	
привязи)	

All	day:	

Part	of	day:	

All	day:	

Part	of	day:	

All	day:	

Part	of	day:	

All	day:	

Part	of	day:	

Some%mes/Rare:	 Some%mes/Rare:	 Some%mes/Rare:	Some%mes/Rare:	

Notes:	
Примечание:	

Notes:	
Примечание:	

Notes:	
Примечание:	

Notes:	
Примечание:	

Весь	день:	 Весь	день:	 Весь	день:	 Весь	день:	

Часть	дня:	 Часть	дня:	 Часть	дня:	 Часть	дня:	

Иногда/Редко:	 Иногда/Редко:	 Иногда/Редко:	Иногда/Редко:	
Never:	 Never:	 Never:	Never:	

Никогда:	 Никогда:	 Никогда:	Никогда:	

Vaccinated	against?	
(%ck	all	that	apply)	

Против	каких	
заболеваний	
вакцинирована?	
(отметить	все	
подходящие)	

Rabies:	

Distemper:	

Rabies:	

Distemper:	

Rabies:	

Distemper:	

Rabies:	

Distemper:	

Other:	 Other:	 Other:	 Other:	

Month	/	Year	
Месяц	/	Год	

Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Бешенство:	 Бешенство:	 Бешенство:	 Бешенство:	

Чума:	 Чума:	 Чума:	 Чума:	

Другое:	 Другое:	 Другое:	 Другое:	

Month	/	Year	
Месяц	/	Год	

Month	/	Year	
Месяц	/	Год	

Month	/	Year	
Месяц	/	Год	

/	

/	

/	

/	

/	

/	

/	

/	

/	

/	

/	

/	

Reason(s)	for	not	
vaccina%ng?	
(%ck	all	that	apply)	

Почему	Вы	не	
вакцинируете	собак?	
(отметить	все	
подходящие)	

Purpose:	

Yearly	need:	

Purpose:	

Yearly	need:	

Purpose:	

Yearly	need:	

Purpose:	

Yearly	need:	

Loca%on:	 Loca%on:	 Loca%on:	Loca%on:	

Зачем:	 Зачем:	 Зачем:	 Зачем:	

Нужно	ежегодно:	 Нужно	ежегодно:	 Нужно	ежегодно:	 Нужно	ежегодно:	

Где	это	делают:	 Где	это	делают:	 Где	это	делают:	Где	это	делают:	

Not	aware	of:	
Я	не	знаю:	

Not	aware	of:	
Я	не	знаю:	

Not	aware	of:	
Я	не	знаю:	

Not	aware	of:	
Я	не	знаю:	

Too	distant:	

Too	expensive:	

Too	distant:	

Too	expensive:	

Too	distant:	

Too	expensive:	

Too	distant:	

Too	expensive:	

No	%me:	 No	%me:	 No	%me:	No	%me:	

Слишком	далеко:	 Слишком	далеко:	 Слишком	далеко:	 Слишком	далеко:	

Слишком	дорого:	 Слишком	дорого:	 Слишком	дорого:	 Слишком	дорого:	

Нет	времени:	 Нет	времени:	 Нет	времени:	Нет	времени:	

Other	reason:	
Другие	причины:	

Other	reason:	
Другие	причины:	

Other	reason:	
Другие	причины:	

Other	reason:	
Другие	причины:	

Can’t	handle:	 Can’t	handle:	 Can’t	handle:	 Can’t	handle:	

Other:	 Other:	 Other:	Other:	

Не	могу	удержать		 Не	могу	удержать	 Не	могу	удержать	 Не	могу	удержать	

Другое:	 Другое:	 Другое:	Другое:	
Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

собаку:	 собаку:	собаку:	собаку:	

Bite	history?	

Кусала	ли	собака	
человека?	

Posi%ve:	
Имело	место:	

Nega%ve:	
Не	было:	

Posi%ve:	
Имело	место:	

Nega%ve:	
Не	было:	

Posi%ve:	
Имело	место:	

Nega%ve:	
Не	было:	

Posi%ve:	
Имело	место:	

Nega%ve:	
Не	было:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Bite	vic%m(s)?	
(give	numbers)	

Кого	кусала	собака?	
(отметить	количество)	

Self:	
Опрашиваемого:	

Family:	
Домочадцев:	

Self:	
Опрашиваемого:	

Family:	
Домочадцев:	

Self:	
Опрашиваемого:	

Family:	
Домочадцев:	

Self:	
Опрашиваемого:	

Family:	
Домочадцев:	

Other:	
Прочих:	

Other:	
Прочих:	

Other:	
Прочих:	

Other:	
Прочих:	

Notes:		
Примечание:	



	

	

Yrs/Лет	 Yrs/Лет	 Yrs/Лет	
Мо/Мес	 Мо/Мес	Мо/Мес	Мо/Мес	

Dead	dog	data:		
Данные	о	мертвых	собаках:	

Please	complete	one	column	for	each	animal	
dying	in	previous	year	(%ck	appropriate	boxes)	

Пожалуйста,	вносите	данные	о	каждой	собаке,	
погибшей	в	предыд.	году,	в	отдельную	колонку		

Age	
(Tick	and	specify)	

Ad.	(>3	mo):	
Взр.	(>3	мес.):	

Juv.	(<3	mo.):	
Мол.	(<3	мес.):	

Возраст	
(отметить	и	ниже	
написать	подробно)	

Gender	
Пол	

Male:	
Самец:	

Female:	
Самка:	

Male:	
Самец:	

Female:	
Самка:	

Male:	
Самец:	

Female:	
Самка:	

Male:	
Самец:	

Female:	
Самка:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Bite	history?	

Кусала	ли	собака	
человека?	

Posi%ve:	
Имело	место:	

Nega%ve:	
Не	было:	

Posi%ve:	
Имело	место:	

Nega%ve:	
Не	было:	

Posi%ve:	
Имело	место:	

Nega%ve:	
Не	было:	

Posi%ve:	
Имело	место:	

Nega%ve:	
Не	было:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Bite	vic%m(s)?	
(give	numbers)	

Кого	кусала	собака?	
(отметить	количество)	

Self:	
Опрашиваемого:	

Family:	
Домочадцев:	

Self:	
Опрашиваемого:	

Family:	
Домочадцев:	

Self:	
Опрашиваемого:	

Family:	
Домочадцев:	

Self:	
Опрашиваемого:	

Family:	
Домочадцев:	

Other:	
Прочих:	

Other:	
Прочих:	

Other:	
Прочих:	

Other:	
Прочих:	

Cause	of	death	
Причина	смерти	

Road	accident:	
Автоавария:	

Sickness:	
Болезнь:	

Accident:	
Автоавария:	

Sickness:	
Болезнь:	

Accident:	
Автоавария:	

Sickness:	
Болезнь:	

Accident:	
Автоавария:	

Sickness:	
Болезнь:	

Other:	
Другое:	

Other:	
Другое:	

Other:	
Другое:	

Other:	
Другое:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Ad.	(>3	mo):	
Взр.	(>3	мес.):	

Ad.	(>3	mo):	
Взр.	(>3	мес.):	

Ad.	(>3	mo):	
Взр.	(>3	мес.):	

Juv.	(<3	mo.):	
Мол.	(<3	мес.):	

Juv.	(<3	mo.):	
Мол.	(<3	мес.):	

Juv.	(<3	mo.):	
Мол.	(<3	мес.):	

Notes:		
Примечание:	

Yrs/Лет	



	
	
Individual	cat	data:		
Данные	о	кошке:	

Please	complete	one	column	for	each	animal,	
(%ck	appropriate	boxes)	

Пожалуйста,	вносите	данные	о	каждой	кошке	в	
отдельную	колонку	

Samples	collected?		
(if	yes	then	enter	
Animal	ID)	
Были	ли	взяты	
образцы?		
(если	да,	то	присвойте	
животному	ID)	

Сыворотка:	

Мазок	из	носа:	

Мазок	крови:	

FTA	карточка:	

Animal	ID	(if	needed)	
ID	животного	(если	треб.)	

Age	
(Tick	and	specify)	

Ad.	(>3	mo):	
Взр.(>3	мес.):	

Juv.	(<3	mo.):	
Мол.(<3	мес.):	

Ad.	(>3	mo):	
Взр.(>3	мес.):	

Juv.	(<3	mo.):	
Мол.(<3	мес.):	

Ad.	(>3	mo):	
Взр.(>3	мес.):	

Juv.	(<3	mo.):	
Мол.(<3	мес.):	

Ad.	(>3	mo):	
Взр.(>3	мес.):	

Juv.	(<3	mo.):	
Мол.(<3	мес.):	

Возраст	
(отметить	и	ниже	
написать	подробно)	

Gender	
Пол	

Male:	

Female:	

Yes:	Spayed/castrated?	
Стерилизована/	
кастрирован?	

Male:	

Female:	

Yes:	

Male:	

Female:	

Yes:	

Male:	

Female:	

Yes:	

No	

Unknown:	 Unknown:	 Unknown:	 Unknown:	

Unknown:	 Unknown:	 Unknown:	 Unknown:	

Сыворотка:	

Мазок	из	носа:	

Мазок	крови:	

FTA	карточка:	

Сыворотка:	

Мазок	из	носа:	

Мазок	крови:	

FTA	карточка:	

Сыворотка:	

Мазок	из	носа:	

Мазок	крови:	

FTA	карточка:	

Household	ID:	
ID	дома	:	

Current	reproduc%ve	
status?	
Текущий	
репродуктивный	статус?	

No.	of	liLers	in	last	year?	
Кол-во	пометов	в	

Does	the	cat	spend	
%me	outside?	
Выходит	ли	на	улицу?	

Is	the	cat	vaccinated?	
Есть	ли	вакцинация?	

Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Yes:	
Да:	

Yes:	
Да:	

Yes:	
Да:	

Yes:	
Да:	

Last	vaccine	date?	
Дата	последн.	вакц-и?	

Месяц:	 Месяц:	 Месяц:	 Месяц:	Год:	 Год:	 Год:	 Год:	
/	 /	 /	 /	

No.	kiLens	in	last	liLer?	
Кол-во	котят	в	

No:	
Нет:	

No:	
Нет:	

No:	
Нет:	

No:	
Нет:	

Yes:	
Да:	

Yes:	
Да:	

Yes:	
Да:	

Yes:	
Да:	

No:	
Нет:	

No:	
Нет:	

No:	
Нет:	

No:	
Нет:	

Month:	 Month:	 Month:	 Month:	Year:	 Year:	 Year:	 Year:	

Yrs/Лет	 Yrs/Лет	 Yrs/Лет	
Мо/Мес	 Мо/Мес	Мо/Мес	Мо/Мес	

Yrs/Лет	

прошлом	помете?	

прошлом	году?	

Pregnant:	

Lacta%ng:	

Serum:	 Serum:	 Serum:	 Serum:	

Nasal	swab:	 Nasal	swab:	 Nasal	swab:	 Nasal	swab:	

Blood	slide:	 Blood	slide:	 Blood	slide:	 Blood	slide:	

FTA	card:	 FTA	card:	 FTA	card:	 FTA	card:	

Самец:	 Самец:	 Самец:	 Самец:	

Самка:	 Самка:	 Самка:	 Самка:	

Неизвестно:	 Неизвестно:	 Неизвестно:	 Неизвестно:	

Да:	 Да:	 Да:	 Да:	

Нет	

Неизвестно:	 Неизвестно:	 Неизвестно:	 Неизвестно:	

Yes	
Да	 ?	

Беременна:	

Кормящая:	

No	

Pregnant:	

Lacta%ng:	

Нет	
Yes	
Да	 ?	

Беременна:	

Кормящая:	

No	

Pregnant:	

Lacta%ng:	

Нет	
Yes	
Да	 ?	

Беременна:	

Кормящая:	

No	

Pregnant:	

Lacta%ng:	

Нет	
Yes	
Да	 ?	

Беременна:	

Кормящая:	

No:	
Нет:	

No:	
Нет:	

No:	
Нет:	

No:	
Нет:	



	

	
Dead	cat	data:		
Данные	о	погибших:	

Please	complete	one	column	for	each	animal	
dying	in	previous	year	(%ck	appropriate	boxes)	

Пожалуйста,	вносите	данные	о	каждой	кошке,	
погибшей	в	предыд.	году,	в	отдельную	колонку	

Age	
(Tick	and	specify)	

Ad.	(>3	mo):	
Взр.	(>3	мес.):	
Juv.	(<3	mo.):	

Мол.(<3	мес.):	

Ad.	(>3	mo):	
Взр.	(>3	мес.):	
Juv.	(<3	mo.):	

Мол.(<3	мес.):	

Ad.	(>3	mo):	
Взр.	(>3	мес.):	
Juv.	(<3	mo.):	

Мол.(<3	мес.):	

Ad.	(>3	mo):	
Взр.	(>3	мес.):	
Juv.	(<3	mo.):	

Мол.(<3	мес.):	
Возраст	
(отметить	и	ниже	
написать	подробно)	

Gender	
Пол	

Male:	
Самец:	
Female:	
Самка:	

Male:	
Самец:	
Female:	
Самка:	

Male:	
Самец:	
Female:	
Самка:	

Male:	
Самец:	
Female:	
Самка:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Unknown:	
Неизвестно:	

Cause	of	death	
Причина	смерти	

Road	accident:	
Автоавария:	

Sickness:	
Болезнь:	

Road	accident:	
Автоавария:	

Sickness:	
Болезнь:	

Road	accident:	
Автоавария:	

Sickness:	
Болезнь:	

Road	accident:	
Автоавария:	

Sickness:	
Болезнь:	

Other:	
Другое:	

Other:	
Другое:	

Other:	
Другое:	

Other:	
Другое:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Specify:	
Подробности:	

Notes:		
Примечание:	

Yrs/Лет	 Yrs/Лет	 Yrs/Лет	
Мо/Мес	 Мо/Мес	Мо/Мес	Мо/Мес	

Yrs/Лет	
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Appendix VII. Household questionnaire (non-pet-
owning households) 

  



Some%mes:	
	

Do	you	see	un-owned	(feral)	dogs	
roaming	in	the	area?:	
Как	часто	Вы	видите	неизвестных	
собак	рядом	с	Вашим	домом?:	Иногда:	

Никогда:	

Number	of	livestock	at	property:	

Adult	(≥18y):	People	in	household:	
Количество	человек	в	доме:	

Год:	
Year:	

Время:	
Time:	

Simple	Household	Survey	Form	(No	Pets)	
Interviewer	name:	
ФИО	опрашивающего:	 День:	

Day:	
Месяц:	
Month:	

Household	ID:	
ID	дома:	

(Northing)	
(Северная)	

(Eas%ng)	
	(Восточная)	

Address:	
Адрес:	

SeLlement:	
Населенный	

UTM:	

Residence	type:	
Вид	жилья:	

CoLage:	
Частный	дом:	

Apartment:	
Квартира:	

Other:	
Другое:	

Specify:	
Особенности:	

Взрослые	(≥18лет):	
Child	(<18y):	

Дети	(<18лет):	

Кол-во	с/х	животных	во	дворе:	
CaLle:	
К.р.с.:	

Pigs:	
Свиньи:	

Number	of	livestock	elsewhere:	
Кол-во	с/х	животных	в	округе:	

CaLle:	
К.р.с.:	

Pigs:	
Свиньи:	

Always:	
Всегда:	

Never:	

Always:	
Всегда:	

Иногда:	

Never:	
Никогда:	

Do	you	see	neighbor’s	dogs	roaming	
in	the	area?:	
Как	часто	Вы	видите	соседских	собак,	
гуляющих	без	присмотра?:	

Household	data:			Общая	информация	о	доме	и	тех,	кто	в	нем	проживает:	

Chickens:	
Куры:	

Chickens:	
Куры:	

Unknown:	
Не	знаю:	

Unknown:	
Не	знаю:	

пункт:	

Other:	
Другое:	

Other:	
Другое:	

Number	of	small	animals:	
Количество	животных:	

Dogs:	
Собак:	

Cats:	
Кошек:	

Number	of	dogs	10	yrs	ago:	
Количество	собак	10	лет	назад:	

Some%mes:	
	

Number	of	dead	cats	in	the	last	year:		
Количество	кошек,	погибших	в	прошлом	году:	
:	

Notes:		
Примечание:	

Yrs/Лет	
Мо/Мес	

Age	
Возраст	

Gender	
Пол	

Male:	
Самец:	

Female:	
Самка:	

Unknown:	
Неизвестно:	

Cause	of	death	
Причина	смерти	

Yrs/Лет	
Мо/Мес	

Male:	
Самец:	

Female:	
Самка:	

Unknown:	
Неизвестно:	

Number	of	dead	dogs	in	the	last	year:		
Количество	собак,	погибших	в	прошлом	году:	

Yrs/Лет	
Мо/Мес	

Age	
Возраст	

Gender	
Пол	

Male:	
Самец:	

Female:	
Самка:	

Unknown:	
Неизвестно:	

Cause	of	death	
Причина	смерти	

Yrs/Лет	
Мо/Мес	

Male:	
Самец:	

Female:	
Самка:	

Unknown:	
Неизвестно:	



  280 

Appendix VIII. Urban questionnaire survey



Год:	
Year:	

Время:	
Time:	

Urban	Pet	Survey	Ques4onnaire		
Interviewer	name:	
ФИО	опрашивающего:	 День:	

Day:	
Месяц:	
Month:	

Residence	type:	
Вид	жилья:	

Co@age:	
Частный	дом:	

Apartment:	
Квартира:	

Adult:	

People	in	household:	
Количество	человек		

В	доме:	

Взрослые:	
Child:	
Дети:	

Se@lement:	
пункт:	

No.	of	small	animals:	
Количество	животных:	

Dogs:	
Собак:	

Cats:	
Кошек:	

Number	of	dogs		
10	yrs	ago:	

Количество	собак		
10	лет	назад:	Other:	

Другое:	
Ussuriysk:	
Уссурийск:	

Sheet	number:	
Номер	листа:	

(Northing)	
(Северная)	

(Eas4ng)	
	(Восточная)	

UTM:	
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Appendix IX. Effect of data cleaning on dog 
ownership explanatory variables 

 

Table summarizing the effect of data cleaning on the distribution of explanatory variables 

used in multivariate binomial generalized linear models. Full data sets were cleaned to 

remove dogs with incomplete sets of explanatory data, to produce an edited dataset. 

Variable Levels Full dataset 
distribution 

Edited dataset 
distribution 

Difference 

Study area Southwest 50.2% (n=1,414) 50.0% (n=1,397) 0.2% 
  Lazovskii 71.4% (n=609) 71.8% (n=592) -0.4% 
  SABZ 61.2% (n=520) 60.2% (n=505) 1.0% 
Community 
type 

Village 72.9% (n=1,037) 72.9% (n=1,019) 0.0% 
Town 63.4% (n=943) 63.0% (n=920) 0.4% 

  Large town 19.4% (n=563) 18.9% (n=555) 0.4% 
Residence 
type 

Apartment 16.9% (n=911) 16.7% (n=900) 0.2% 
Cottage 80.2% (n=1,632) 80.2% (n=1,594) 0.0% 

Number of 
people 

1 44.6% (n=498) 44.6% (n=498) 0.0% 
2 57.8% (n=922) 57.8% (n=922) 0.0% 

  3 58.6% (n=534) 58.5% (n=533) 0.1% 
  4 64.7% (n=334) 64.7% (n=334) 0.0% 
  >5 70.0% (n=207) 70.0% (n=207) 0.0% 
Children Present 60.8% (n=816) 60.8% (n=816) 0.0% 
  Absent 55.6% (n=1679) 55.5% (n=1,678) 0.0% 
Cats Present 75.6% (n=1429) 75.3% (n=1,399) 0.2% 
  Absent 34.4% (n=1,114) 34.2% (n=1,095) 0.2% 
Poultry Present 90.2% (n=673) 90.3% (n=659) -0.1% 
  Absent 45.7% (n=1,869) 45.4% (n=1,835) 0.4% 
Livestock Present 94.6% (n=184) 94.5% (n=182) 0.1% 
  Absent 54.6% (n=2,358) 54.3% (n=2,312) 0.3% 
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Appendix X. Effect of data cleaning on dog origin 
explanatory variables 

 

Table summarizing the effect of data cleaning on the distribution of explanatory variables 

used in multivariate binomial generalized linear models. Full data sets were cleaned to 

remove dogs with incomplete sets of explanatory data, to produce an edited dataset. 

Variable Levels Full dataset 
distribution 

Edited dataset 
distribution 

Difference 

Study area Southwest 66.2% (n=1,156) 66.2% (n=1,127) 0.0% 
  Lazovskii 71.4% (n=696) 71.6% (n=663) -0.2% 
  SABZ 73.8% (n=469) 73.7% (n=433) 0.1% 
Community 
type 

Village 65.2% (n=1,293) 65.3% (n=1,246) -0.1% 
Town 75.1% (n=889) 75.0% (n=844) 0.1% 

  Large town 69.8% (n=139) 69.9% (n=133) -0.1% 

Residence 
type 

Apartment 51.5% (n=169) 51.2% (n=162) 0.2% 
Cottage 70.7% (n=2,152) 70.7% (n=2,061) 0.0% 

Number of 
people 

1 72.3% (n=332) 72.0% (n=322) 0.2% 
2 67.0% (n=785) 67.0% (n=766) 0.0% 

  3 67.7% (n=493) 68.2% (n=484) -0.4% 
  4 68.9% (n=367) 69.8% (n=358) -0.9% 
  >5 72.5% (n=298) 73.4% (n=293) -0.9% 
Children Present 69.5% (n=865) 70.1% (n=843) -0.6% 
  Absent 687% (n=1,410) 68.8% (n=1,380) -0.1% 
Cats Owner 70.6% (n=1,821) 70.5% (n=1,748) 0.1% 
  Non-owner 64.4% (n=500) 64.8% (n=475) -0.4% 
Poultry Owner 69.1% (n=1,077) 69.7% (n=1,039) -0.6% 
  Non-owner 69.5% (n=1,244) 68.9% (n=1,184) 0.5% 
Livestock Owner 74.6% (n=398) 75.3% (n=380) -0.6% 
  Non-owner 68.2% (n=1,923) 68.0% (n=1,843) 0.1% 
Gender Female 63.4% (n=715) 63.9% (n=687) -0.5% 
  Male 71.9% (n=1,606) 71.7% (n=1,536) 0.2% 
Guard      
dog 

Yes 73.4% (n=1,565) 73.1% (n=1,512) 0.3% 
No 61.3% (n=732) 61.2% (n=711) 0.2% 

Hunting    
dog 

Yes 53.3% (n=137) 53.3% (n=135) 0.0% 
No 70.6% (n=2,160) 70.3% (n=2,088) 0.2% 

Pet           
dog 

Yes 64.4% (n=873) 64.2% (n=848) 0.2% 
No 72.7% (n=1,424) 72.4% (n=1,375) 0.2% 
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Appendix XI. Effect of data cleaning on dog 
vaccination explanatory variables 

 

Table summarizing the effect of data cleaning on the distribution of explanatory variables 

used in multivariate binomial generalized linear models. Full data sets were cleaned to 

remove dogs with incomplete sets of explanatory data, to produce an edited dataset. 

Variable Levels Full dataset 
distribution 

Edited dataset 
distribution 

Difference 

Study area Southwest 13.7% (n=1,109) 13.6% (n=1,079) 0.1% 
  Lazovskii 9.4% (n=680) 9.0% (n=635) 0.4% 
  SABZ 9.4% (n=465) 10.2% (n=432) -0.7% 
Community 
type 

Village 10.6% (n=1,262) 10.8% (n=1,211) -0.2% 
Town 11.2% (n=865) 11.2% (n=812) 0.0% 

  Large town 22.8% (n=127) 21.1% (n=123) 1.7% 
Residence 
type 

Apartment 25.3% (n=150) 23.6% (n=144) 1.7% 
Cottage 10.6% (n=2,104) 10.7% (n=2,002) -0.1% 

Number of 
people 

1 7.7% (n=325) 7.5% (n=318) 0.1% 
2 12.5% (n=766) 12.8% (n=742) -0.3% 

  3 14.8% (n=481) 14.6% (n=466) 0.2% 
  4 10.3% (n=349) 10.3% (n=339) 0.0% 
  >5 9.0% (n=288) 9.3% (n=281) -0.2% 
Children Present 10.8% (n=1,377) 11.0% (n=1,342) -0.1% 
  Absent 12.6% (n=832) 12.6% (n=804) 0.1% 
Cats Owner 13.5% (n=480) 13.9% (n=447) -0.3% 
  Non-owner 11.0% (n=1,774) 11.0% (n=1,699) 0.0% 
Poultry Owner 11.9% (n=1,203) 11.9% (n=1,136) 0.0% 
  Non-owner 11.1% (n=1,051) 11.2% (n=1,010) -0.1% 
Livestock Owner 11.4% (n=1,869) 11.5% (n=1,776) -0.1% 
  Non-owner 12.2% (n=385) 11.9% (n=370) 0.3% 
Gender Female 13.0% (n=694) 13.0% (n=663) 0.0% 
  Male 10.9% (n=1,560) 10.9% (n=1,483) 0.0% 
Source Local 8.7% (n=1,545) 8.8% (n=1,497) -0.1% 
  Non-local 18.1% (n=669) 17.9% (n=649) 0.2% 
Guard      
dog 

Yes 18.4% (n=702) 18.0% (n=683) 0.4% 
No 8.4% (n=1,520) 8.5% (n=1,463) -0.1% 

Hunting    
dog 

Yes 10.9% (n=2,089) 10.9% (n=2,014) 0.0% 
No 21.8% (n=133) 22.0% (n=132) -0.2% 

Companion    
dog 

Yes 10.2% (n=1,388) 10.4% (n=1,335) -0.2% 
No 13.8% (n=834) 13.4% (n=811) 0.3% 
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Appendix XII. Effect of data cleaning on dog 
roaming explanatory variables 

 

Table summarizing the effect of data cleaning on the distribution of explanatory variables 

used in multivariate binomial generalized linear models. Full data sets were cleaned to 

remove dogs with incomplete sets of explanatory data, to produce an edited dataset. 

Variable Explanatory 
levels 

Response     
level 

Full dataset 
distribution 

Edited dataset 
distribution 

Diff. 

Study   
area 

Southwest Non-roam 59.0% 
(n=1,155) 

58.4% 
(n=1,122) -0.6% 

  Non-roam 41.0% 
(n=1,155) 

41.6% 
(n=1,122) 0.6%  

  Lazovskii Non-roam 77.1% (n=707) 77.4% (n=660) 0.3%  
    Non-roam 22.9% (n=707) 22.6% (n=660) -0.3%  
  SABZ Non-roam 65.3% (n=461) 65.1% (n=427) 0.2%  
    Non-roam 34.7% (n=461) 34.9% (n=427) 0.2%  

Community 
type 

Village Non-roam 59.5% 
(n=1,290) 

58.9% 
(n=1,237) -0.6%  

  Non-roam 40.5% 
(n=1,290) 

41.1% 
(n=1,237) 0.6%  

  Town Non-roam 72.4% (n=896) 72.3% (n=840) -0.1%  
    Non-roam 27.6% (n=896) 27.7% (n=840) 0.1%  
  Large town Non-roam 81.8% (n=137) 81.8% (n=132) 0.0% 
    Non-roam 18.2% (n=137) 18.2% (n=132) 0.0% 

Residence 
type 

Apartment Non-roam 78.71% 
(n=169) 77.8% (n=162) -0.9%  

  Non-roam 21.29% 
(n=169) 22.2% (n=162) 0.9%  

  Cottage Non-roam 64.8% 
(n=2,154) 

64.4% 
(n=2,047) -0.4%  

    Non-roam 35.2% 
(n=2,154) 

35.6% 
(n=2,047) 0.4%  

Number of 
people 

1 Non-roam 63.6% (n=330) 63.2% (n=321) -0.4%  
  Non-roam 36.4% (n=330) 36.8% (n=321) 0.4%  

  2 Non-roam 63.7% (n=790) 62.9% (n=761) -0.8%  
    Non-roam 36.3% (n=790) 37.1% (n=761) 0.8%  
  3 Non-roam 70.9% (n=494) 71.2% (n=483) 0.3%  
    Non-roam 29.1% (n=494) 28.8% (n=483) -0.3%  
  4 Non-roam 61.8% (n=364) 61.9% (n=357) 0.1%  
    Non-roam 38.2% (n=364) 38.1% (n=357) -0.1%  
  >5 Non-roam 69.6% (n=299) 68.6% (n=287) -1.0% 
    Non-roam 30.4% (n=299) 31.4% (n=287) 1.0% 
Children Present Non-roam 67% (n=861) 66.8% (n=835) -0.2%  
    Non-roam 33% (n=861) 33.2% (n=835) 0.2%  
  Absent Non-roam 64.9% 64.5% -0.4%  
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(n=1,416) (n=1,374) 

    Non-roam 35.1% 
(n=1,416) 

35.5% 
(n=1,374) 0.4%  

Cats Owner Non-roam 64.0% 
(n=1,822) 

63.6% 
(n=1,736) -0.4%  

    Non-roam 36.0% 
(n=1,822) 

36.4% 
(n=1,736) 0.4%  

  Absent Non-roam 72.3% (n=501) 71.9% (n=473) -0.4%  
    Non-roam 27.7% (n=501) 28.1% (n=473) 0.4%  

Poultry Owner Non-roam 65.2% 
(n=1,073) 

65.0% 
(n=1,031) -0.2%  

    Non-roam 34.8% 
(n=1,073) 

35.0% 
(n=1,031) 0.2%  

  Absent Non-roam 66.2% 
(n=1,250) 

65.7% 
(n=1,178) -0.5%  

    Non-roam 33.8% 
(n=1,250) 

34.3% 
(n=1,178) 0.5%  

Livestock Owner Non-roam 61.7% (n=389) 61.0% (n=377) -0.7%  
    Non-roam 38.3% (n=389) 39.0% (n=377) 0.7%  

  Absent Non-roam 66.6% 
(n=1,934) 

66.3% 
(n=1,832) -0.3%  

    Non-roam 33.4% 
(n=1,934) 

33.7% 
(n=1,832) 0.3%  

Gender Male Non-roam 67.3% (n=713) 66.9% (n=685) -0.4%  
    Non-roam 32.7% (n=713) 33.1% (n=685) 0.4%  

  Female Non-roam 65.1% 
(n=1,610) 

64.7% 
(n=1,524) -0.4%  

    Non-roam 34.9% 
(n=1,610) 

35.3% 
(n=1,524) 0.4%  

Source Local Non-roam 64.6% 
(n=1,584) 

64.3% 
(n=1,534) -0.3%  

    Non-roam 35.4% 
(n=1,584) 

35.7% 
(n=1,534) 0.3%  

  Non-local Non-roam 67.8% (n=699) 67.9% (n=675) 0.1%  
    Non-roam 32.2% (n=699) 32.1% (n=675) -0.1%  

Guard     
dog 

Yes Non-roam 65.2% 
(n=1,573) 

65.1% 
(n=1,502) -0.1%  

  Non-roam 34.8% 
(n=1,573) 

34.9% 
(n=1,502) 0.1%  

  No Non-roam 66.3% (n=732) 65.9% (n=707) -0.4%  
    Non-roam 33.7% (n=732) 34.1% (n=707) 0.4%  
Hunting 
dog 

Yes Non-roam 70.8% (n=137) 70.4% (n=135) -0.4%  
  Non-roam 29.2% (n=137) 29.6% (n=135) 0.4%  

  No Non-roam 65.2% 
(n=2,168) 

65.0% 
(n=2,075) -0.2%  

    Non-roam 34.8% 
(n=2,168) 

35.0% 
(n=2,075) 0.2%  

Companion       
dog 

Yes Non-roam 62.9% (n=874) 62.5% (n=839) -0.4%  
  Non-roam 37.1% (n=874) 37.5% (n=839) 0.4%  

  No Non-roam 67.1% 
(n=1,431) 

67.2% 
(n=1,370) 0.1%  

    Non-roam 32.9% 
(n=1,431) 

32.8% 
(n=1,370) -0.1%  



  287 

Appendix XIII. Selection process for multivariate 
generalized binary logistic regression models 
predicting dog ownership based on Akaike 
information criterion values 

 

Selection process for multivariate generalized binary logistic regression models predicting 

dog ownership, based on Akaike information criterion (AIC) values. Explanatory variables 

include study area (SA), community type (CA), children in house (CH), people in house 

(PL), cat owner (CO), poultry owner (PO), livestock owner (LO), residence type (RT). 

Settlement was included as a random variable. Models were constructed using a forward 

selection process using AIC values assess model quality. Lowest AIC values at each stage 

of model construction are indicated in bold, and final model is highlighted in grey. 

Model variables AIC ∆AIC	
Base 2878.389 693.278	
SA 2879.627 694.516	
CT 2867.829 682.718	
CH 2869.597 684.486	
PL 2822.85 637.739	
CO 2635.77 450.659	
PO 2658.987 473.876	
LO 2806.687 621.576	
RT 2386.601 201.49	
RT + SA 2385.709 200.598	
RT + CT 2384.003 198.892	
RT + CH 2367.688 182.577	
RT + PL 2333.552 148.441	
RT + CO 2281.289 96.178	
RT + PO 2312.834 127.723	
RT + LO 2355.767 170.656	
RT + CO + SA 2280.623 95.512	
RT + CO + CT 2279.155 94.044	
RT + CO + CH 2270.779 85.668	
RT + CO + PL 2246.669 61.558	
RT + CO + PO 2228.644 43.533	
RT + CO + LO 2260.124 75.013	
RT	+	CO	+	PO	+	SA	 2228.463 43.352	
RT	+	CO	+	PO	+	CT	 2226.472 41.361	
RT	+	CO	+	PO	+	CH	 2216.76 31.649	
RT	+	CO	+	PO	+	PL	 2198.034 12.923	
RT	+	CO	+	PO	+	LO	 2216.457 31.346	
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RT + CO + PO + PL + SA 2197.975 12.864	
RT + CO + PO + PL + CT 2195.21 10.099	
RT + CO + PO + PL + CH 2199.674 14.563	
RT + CO + PO + PL + LO 2187.272 2.161	
RT + CO + PO + PL + LO + SA 2187.628 2.517	
RT + CO + PO + PL + LO + CT 2185.111 0	
RT + CO + PO + PL + LO + CH 2189.044 3.933	
RT + CO + PO + PL + LO + CT + SA 2186.267 1.156	
RT + CO + PO + PL + LO + CT + CH 2186.894 1.783	
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Appendix XIV. Selection process for multivariate 
generalized binary logistic regression models 
predicting dog origin based on Akaike information 
criterion values 

 

Selection process for multivariate generalized binary logistic regression models predicting 

dog origin, based on Akaike information criterion (AIC) values. Explanatory variables 

include study area (SA), gender (GE), community type (CA), children in house (CH), 

people in house (PL), cat owner (CO), poultry owner (PO), livestock owner (LO), 

residence type (RT), guard dog (GD), hunting dog (HD), companion dog (CD), and source 

(SO). Household was included as a random variable. Models were constructed using a 

forward selection process using AIC values assess model quality. Lowest AIC values at 

each stage of model construction are indicated in bold, and final model is highlighted in 

grey. 

Model variables AIC ∆AIC 
Base 2682.611 86.145 
SA 2674.446 77.98 
GE 2663.394 66.928 
CT 2662.925 66.459 
CH 2684.493 88.027 
PL 2684.29 87.824 
CO 2680.672 84.206 
PO 2684.497 88.031 
LO 2681.163 84.697 
RT 2661.959 65.493 
GD 2653.241 56.775 
HT 2663.596 67.13 
CD 2668.972 72.506 
GD + SA 2643.189 46.723 
GD + GE 2639.381 42.915 
GD + CT 2627.231 30.765 
GD + CH 2655.181 58.715 
GD + PL 2655.077 58.611 
GD + CO 2653.551 57.085 
GD + PO 2655.133 58.667 
GD + LO 2653.03 56.564 
GD + RT 2645.837 49.371 
GD + HT 2642.436 45.97 
GD + CD 2654.681 58.215 
GD + CT + SA 2631.115 34.649 
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GD + CT + GE 2614.598 18.132 
GD + CT + CH 2629.229 32.763 
GD + CT + PL 2629.047 32.581 
GD + CT + CO 2626.807 30.341 
GD + CT + PO 2629.067 32.601 
GD + CT + LO 2625.302 28.836 
GD + CT + RT 2611.304 14.838 
GD + CT + HT 2614.271 17.805 
GD + CT + CD 2628.432 31.966 
GD + CT + RT + SA 2596.466 0 
GD + CT + RT + GE 2599.708 3.242 
GD + CT + RT + CH 2610.733 14.267 
GD + CT + RT + PL 2612.937 16.471 
GD + CT + RT + CO 2613.012 16.546 
GD + CT + RT + PO 2613.154 16.688 
GD + CT + RT + LO 2613.206 16.74 
GD + CT + RT + HT 2613.289 16.823 
GD + CT + RT + CD 2614.819 18.353 
GD + CT + RT + SA + GE 2603.236 6.77 
GD + CT + RT + SA + CH 2616.81 20.344 
GD + CT + RT + SA + PL 2616.73 20.264 
GD + CT + RT + SA + CO 2616.428 19.962 
GD + CT + RT + SA + PO 2616.628 20.162 
GD + CT + RT + SA + LO 2614.29 17.824 
GD + CT + RT + SA + HT 2599.906 3.44 
GD + CT + RT + SA + CD 2616.546 20.08 
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Appendix XV. Selection process for multivariate 
generalized binary logistic regression models 
predicting dog roaming based on Akaike 
information criterion values 

 

Selection process for multivariate generalized binary logistic regression models predicting 

dog roaming, based on Akaike information criterion (AIC) values. Explanatory variables 

include age (AG), study area (SA), gender (GE), community type (CA), children in house 

(CH), people in house (PL), cat owner (CO), poultry owner (PO), livestock owner (LO), 

residence type (RT), guard dog (GD), hunting dog (HD), companion dog (CD), and source 

(SO). Household was included as a random variable. Models were constructed using a 

forward selection process using AIC values assess model quality. Lowest AIC values at 

each stage of model construction are indicated in bold, and final model is highlighted in 

grey. 

Model variables AIC ∆AIC 
Base 2264.436 6.137 
AG 2264.522 6.223 
GE 2266.436 8.137 
SA 2264.639 6.34 
CT 2265.134 6.835 
CH 2265.8 7.501 
PL 2265.685 7.386 
CO 2265.845 7.546 
PO 2266.325 8.026 
LO 2266.439 8.14 
RT 2265.855 7.556 
GD 2264.777 6.478 
HT 2266.205 7.906 
CD 2260.032 1.733 
SO 2266.278 7.979 
CD + AG 2259.58 1.281 
CD + GE 2261.907 3.608 
CD + SA 2260.209 1.91 
CD + CT 2259.084 0.785 
CD + CH 2261.284 2.985 
CD + PL 2261.237 2.938 
CD + CO 2260.782 2.483 
CD + PO 2262.022 3.723 
CD + LO 2262.002 3.703 
CD + RT 2259.763 1.464 
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CD + GD 2261.773 3.474 
CD + HT 2262.028 3.729 
CD + SO 2261.582 3.283 
CD + CT + AG 2258.408 0.109 
CD + CT + GE 2260.968 2.669 
CD + CT + SA 2258.889 0.59 
CD + CT + CH 2260.506 2.207 
CD + CT + PL 2260.335 2.036 
CD + CT + CO 2260.476 2.177 
CD + CT + PO 2260.754 2.455 
CD + CT + LO 2261.084 2.785 
CD + CT + RT 2260.53 2.231 
CD + CT + GD 2260.988 2.689 
CD + CT + HT 2261.084 2.785 
CD + CT + SO 2260.363 2.064 
CD + CT + AG + GE 2432.884 174.585 
CD + CT + AG + SA 2258.299 0 
CD + CT + AG + CH 2260.031 1.732 
CD + CT + AG + PL 2259.845 1.546 
CD + CT + AG + CO 2259.697 1.398 
CD + CT + AG + PO 2260.094 1.795 
CD + CT + AG + LO 2260.384 2.085 
CD + CT + AG + RT 2259.635 1.336 
CD + CT + AG + GD 2260.353 2.054 
CD + CT + AG + HT 2260.404 2.105 
CD + CT + AG + SO 2259.662 1.363 
CD + CT + AG + SA + GE 2291.316 33.017 
CD + CT + AG + SA + CH 2263.514 5.215 
CD + CT + AG + SA + PL 2280.086 21.787 
CD + CT + AG + SA + CO 2372.313 114.014 
CD + CT + AG + SA + PO 2264.139 5.84 
CD + CT + AG + SA + LO 2260.161 1.862 
CD + CT + AG + SA + RT 2334.109 75.81 
CD + CT + AG + SA + GD 2292.649 34.35 
CD + CT + AG + SA + HT 2262.769 4.47 
CD + CT + AG + SA + SO 2271.048 12.749 
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Appendix XVI. Selection process for multivariate 
generalized binary logistic regression models 
predicting dog vaccination based on Akaike 
information criterion values 

 

Selection process for multivariate generalized binary logistic regression models predicting 

dog vaccination, based on Akaike information criterion (AIC) values. Explanatory 

variables include study area (SA), gender (GE), community type (CA), children in house 

(CH), people in house (PL), cat owner (CO), poultry owner (PO), livestock owner (LO), 

residence type (RT), guard dog (GD), hunting dog (HD), companion dog (CD), and source 

(SO). Household was included as a random variable. Models were constructed using a 

forward selection process using AIC values assess model quality. Lowest AIC values at 

each stage of model construction are indicated in bold, and final model is highlighted in 

grey. 

Model variables AIC ∆AIC 
Base 788.9297 8.5174 
SA 792.4045 11.9922 
GE 790.8916 10.4793 
CT 791.764 11.3517 
CH 790.9115 10.4992 
PL 790.8819 10.4696 
CO 790.216 9.8037 
PO 790.5131 10.1008 
LO 790.8129 10.4006 
RT 789.0919 8.6796 
GD 784.2839 3.8716 
HT 789.8071 9.3948 
CD 784.6581 4.2458 
SO 783.9647 3.5524 
SO + SA 787.5835 7.1712 
SO + GE 785.3715 4.9592 
SO + CT 786.651 6.2387 
SO + CH 785.934 5.5217 
SO + PL 785.9268 5.5145 
SO + CO 785.3904 4.9781 
SO + PO 785.5706 5.1583 
SO + LO 785.8958 5.4835 
SO + RT 784.6958 4.2835 
SO + GD 780.4123 0 
SO + HT 784.7187 4.3064 
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SO + CD 780.483 0.0707 
SO + GD + SA 783.9979 3.5856 
SO + GD + GE 781.8081 1.3958 
SO + GD + CT 783.752 3.3397 
SO + GD + CH 782.3842 1.9719 
SO + GD + PL 782.3896 1.9773 
SO + GD + CO 782.1329 1.7206 
SO + GD + PO 782.2903 1.878 
SO + GD + LO 782.4053 1.993 
SO + GD + RT 782.2903 1.878 
SO + GD + HT 781.5823 1.17 
SO + GD + CD 780.7632 0.3509 
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Appendix XVII. Canine distemper virus full 
genomes 

 

Table listing all 51 full canine distemper virus genomes listed retrieved from GenBank 

Accession Epi-data: Clade 
Country of 
origin Host species 

AB474397 Asia 2 Japan Dog 
AB475097 Asia 2 Japan Dog 
AB475099 Asia 2 Japan Dog 
AB476401 Asia 2 Japan Dog 
AB476402 Asia 2 Japan Dog 
AB490670 Asia 2 Japan Dog 
AB490672 Asia 2 Japan Dog 
AB490674 Asia 2 Japan Dog 
AB490676 Asia 2 Japan Dog 
AB490678 Asia 2 Japan Dog 
AB490679 Asia 2 Japan Dog 
AB490680 Asia 2 Japan Dog 
AB490681 Asia 2 Japan Dog 
AB687720 Asia 1 Japan Crab-eating macaque 
AB687721 Asia 1 Japan Crab-eating macaque 
AF014953 America 1 Not applicable Vaccine 
AF164967 America 2 USA Dog 
AF305419 America 1 Not applicable Vaccine 
AF378705 America 1 Not applicable Vaccine 
AY386315 Europe/South America 1 Germany Dog 
AY386316 Europe/South America 1 Germany Dog 
AY443350 America 2 USA Raccoon 
AY445077 America 1 USA Raccoon 
AY466011 America 1 USA Raccoon 
AY542312 America 1 USA Raccoon 
AY649446 America 2 USA Raccoon 
EU716337 America 2 USA Dog 
EU726268 America 1 China American mink 
GU138403 America 1 Not applicable Vaccine 
HM046486 America 1 Kazakhstan Caspian seal 
HM063009 America 1 Kazakhstan American mink 
HM852904 Asia 1 China Rhesus macaque 
JN896331 Asia 1 China Dog 
JN896987 America 1 Not applicable Vaccine 
JX681125 Asia 1 China Fox sp 
KC427278 Asia 1 China American mink 
KF640687 America 3 USA Dog 
KF856711 Asia 1 China Monkey sp 
KF914669 Arctic Italy Dog 
KJ123771 America 2 USA Dog 
KJ466106 Asia 1 China Raccoon dog 
KJ848781 Asia 1 China Raccoon dog 
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KJ994343 Asia 1 China Raccoon dog 
KM926612 America 1 China European polecat 
KP677502 Asia 1 China Giant panda 
KP738610 Asia 1 China Raccoon dog 
KP765763 Asia 1 China Fox sp 
KP765764 Asia 1 China Fox sp 
KP793921 Asia 1 China Giant panda 
KX024708 Arctic Italy Eurasian badger 
KX024709 Arctic Italy Eurasian badger 
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Appendix XVIII. Arctic-like clade canine distemper 
viruses 

 

Table listing all haemagglutinin sequences (>1,500 bp) from all 37 canine distemper 

viruses from the Arctic-like clade retrieved from GenBank. Table includes two 

unpublished viruses from Arctic foxes, obtained from K. Beckmen, Alaska Department of 

Fish and Wildlife.  

Accession 
number 

Country of 
origin Year 

Host  Sequence 
length species 

Z47760 Greenland 1988 Dog 1,824 
X84998 Russia 1988 Baikal seal 1,824 
AF172411 China 1995 Dog 1,824 
EF445052 China 2005 Fox sp. 1,824 
JQ732170 China 2005 Raccoon dog 1,824 
GQ214373 Austria 2003 Dog 1,824 
DQ889178 Hungary 2005 Dog 1,824 
DQ889184 Hungary 2006 Dog 1,824 
DQ889185 Hungary 2006 Dog 1,824 
HM443710 Italy 2000 Dog 1,704 
HM443713 Italy 2000 Dog 1,668 
HM443714 Italy 2000 Dog 1,704 
HM443711 Italy 2001 Dog 1,704 
HM443721 Italy 2002 Dog 1,704 
HM443722 Italy 2002 Dog 1,704 
HM443724 Italy 2002 Dog 1,704 
DQ226087 Italy 2004 Dog 1,824 
HM443715 Italy 2004 Dog 1,704 
DQ226088 Italy 2005 Dog 1,824 
HM443712 Italy 2005 Dog 1,704 
HM443706 Italy 2008 Dog 1,704 
KM115533 Italy 2012 Dog 1,824 
KF914669 Italy 2013 Dog 1,824 
KM115532 Italy 2013 Dog 1,824 
KM115534 Italy 2013 Dog 1,824 
KM115535 Italy 2013 Dog 1,824 
KM115536 Italy 2013 Dog 1,824 
KX024708 Italy 2013 Eurasian badger 1,824 
KX024709 Italy 2013 Eurasian badger 1,824 
KC966928 Italy 2013 Grey wolf 1,824 
KR002657 Switzerland 2013 Dog 1,824 
KR002658 Switzerland 2013 Dog 1,824 
KR002659 Switzerland 2013 Dog 1,824 
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KR002660 Switzerland 2013 Dog 1,824 
KR002661 Switzerland 2013 Dog 1,824 
AY964108 USA 2004 Dog 1,824 
AY964112 USA 2012 Dog 1,824 
[TBD] AF254 USA 2012 Arctic fox 1,824 
[TBD] AF207 USA 2014 Arctic fox 1,824 
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Appendix IXX. Effect of data cleaning on dog 
serology explanatory variables 

 

Table summarizing the effect of data cleaning on the distribution of explanatory variables 

used in multivariate binomial generalized linear models. Full data sets were cleaned to 

remove dogs with incomplete sets of explanatory data, to produce an edited dataset. 

Variable Levels Full dataset 
distribution 

Edited dataset 
distribution 

Difference 

Study area Southwest 10.2% (n=108) 8.8% (n=102) 1.4% 
  Lazovskii 29.7% (n=165) 27.7% (n=155) 2.0% 
  SABZ 43.9% (n=107) 48.1% (n=79) -4.2% 
Community 
type 

Village 21.4% (n=182) 18.9% (n=169) 2.5% 
Town 35.4% (n=192) 36.0% (n=161) -0.6% 

  Large town 0.0% (n=6) 0.0% (n=5) 0.0% 
Residence 
type 

Apartment 37.5% (n=8) 37.5% (n=8) 0.0% 
Cottage 28.0% (n=372) 26.5% (n=328) 1.4% 

Number of 
people 

1 22.2% (n=54) 20.8% (n=48) 1.4% 
2 28.0% (n=125) 27.9% (n=111) 0.1% 

  3 30.4% (n=79) 31.1% (n=74) -0.7% 
  4 28.1% (n=57) 28.3% (n=53) -0.2% 
  >5 24.1% (n=54) 22.0% (n=50) 2.1% 
Children Present 24.5% (n=143) 24.6% (n=134) -0.2% 
  Absent 28.8% (n=226) 28.2% (n=202) 0.5% 
Cats Owner 29.2% (n=312) 27.7% (n=278) 1.5% 
  Non-owner 23.5% (n=68) 22.4% (n=58) 1.1% 
Poultry Owner 27.4% (n=186) 27.3% (n=172) 0.1% 
  Non-owner 28.9% (n=194) 26.2% (n=164) 2.6% 
Livestock Owner 20.8% (n=53) 17.6% (n=51) 3.1% 
  Non-owner 29.4% (n=327) 28.4% (n=285) 0.9% 
Age 1 year 21.8% (n=101) 21.7% (n=92) 0.0% 
  2 years 22.4% (n=67) 22.6% (n=62) -0.2% 
  3 years 22.9% (n=48) 21.4% (n=42) 1.5% 
  4 years 19.4% (n=36) 15.2% (n=33) 4.3% 
  5 years 26.1% (n=23) 20.0% (n=20) 6.1% 
  6 years 35.0% (n=20) 35.0% (n=20) 0.0% 
  7 years 57.1% (n=14) 58.3% (n=12) -1.2% 
  8 years 35.0% (n=20) 33.3% (n=15) 1.7% 
  9 years 55.6% (n=9) 62.5% (n=8) -6.9% 
  10 years 40.0% (n=20) 31.3% (n=16) 8.8% 
  11 years 40.0% (n=5) 40.0% (n=5) 0.0% 
  12 years 66.7% (n=6) 80.0% (n=5) -13.3% 
  13 years 50.0% (n=2) 100.0% (n=1) -50.0% 
  14 years 100.0% (n=1) 100.0% (n=1) 0.0% 
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  15 years 25.0% (n=4) 25.0% (n=4) 0.0% 
Gender Male 28.3% (n=269) 27.4% (n=237) 0.8% 
  Female 27.9% (n=111) 25.3% (n=99) 2.7% 
Forest visits Yes 34.2% (n=152) 33.6% (n=146) 0.6% 
  No 25.1% (n=207) 21.6% (n=190) 3.5% 
Source Local 26.2% (n=271) 25.7% (n=245) 0.5% 
  Non-local 31.7% (n=101) 29.7% (n=91) 2.0% 
Guard dog Yes 25.6% (n=270) 23.5% (n=238) 2.0% 
  No 34.0% (n=106) 34.7% (n=98) -0.7% 
Hunting 
dog Yes 28.6% (n=14) 36.4% (n=11) -7.8% 
  No 27.9% (n=362) 26.5% (n=325) 1.4% 
Pet dog Yes 30.2% (n=149) 29.2% (n=137) 1.0% 
  No 26.4% (n=227) 25.1% (n=199) 1.3% 
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Appendix XX. Effect of data cleaning on tiger 
serology explanatory variables 

 

Table summarizing the effect of data cleaning on the distribution of explanatory variables 

used in multivariate binomial generalized linear models. Full data sets were cleaned to 

remove tigers with incomplete sets of explanatory data, to produce an edited dataset. 

Variable Levels Full dataset 
distribution 

Edited dataset 
distribution 

Difference 

Age 1 year 24.2% (n=16) 26.7% (n=16) -2.4% 
  2 years 25.8% (n=17) 25.0% (n=15) 0.8% 
  3 years 9.1% (n=6) 5.0% (n=3) 4.1% 
  4 years 1.5% (n=1) 1.7% (n=1) -0.2% 
  5 years 10.6% (n=7) 11.7% (n=7) -1.1% 
  6 years 4.5% (n=3) 5.0% (n=3) -0.5% 
  7 years 1.5% (n=1) 1.7% (n=1) -0.2% 
  8 years 7.6% (n=5) 8.3% (n=5) -0.8% 
  9 years 4.5% (n=3) 5.0% (n=3) -0.5% 
  11 years 1.5% (n=1) 1.7% (n=1) -0.2% 
  12 years 3.0% (n=2) 3.3% (n=2) -0.3% 
  13 years 3.0% (n=2) 1.7% (n=1) 1.3% 
  14 years 3.0% (n=2) 3.3% (n=2) -0.3% 
Gender Male 57.4% (n=39) 60.0% (n=36) -2.6% 
  Female 42.6% (n=29) 40.0% (n=24) 2.6% 
Study area Southwest 7.4%	(n=5)	 8.3%	(n=5)	 -1.0% 
  SABZ 64.7%	(n=44)	 70.0%	(n=42)	 -5.3% 
  Non-study 27.9%	(n=19)	 21.7%	(n=13)	 6.3% 
Animal  Conflict 27.9% (n=19) 20.0% (n=12) 7.9% 
category Research 72.1% (n=49) 80.0% (n=48) -7.9% 
Human  Negligible 80.6%	(n=50)	 81.7% (n=49) -1.0% 
density Low 1.6%	(n=1)	 0.0% (n=0) 1.6% 
  Moderate 17.7%	(n=11)	 18.3% (n=11) -0.6% 
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Appendix XXI. Large carnivore raw serology 
results 

 

Virus neutralization (VN) titers for large carnivores sampled from 1992 to 2014 in 

Primorskii Krai study areas Southwest Primorskii (SW), and Sikhote-Alin Biosphere 

Zapovednik (SZ). Details of individual animals include age (in months, or not recorded 

NR), and sex (male – M, female – F, or unknown – U). Virus neutralization titres against 

the Onderstepoort strain of canine distemper virus are reported with negative samples 

(Neg) reflecting a titre lower than 1:4.



 

Animal 
identity Species Date 

Animal 
category 

Study 
area Latitude Longitude Age Sex VN titre 

PT001 Amur tiger 17-Mar-02 Research SABZ 45.163 136.781 132 F Neg (1:8)* 
PT001 Amur tiger 24-Mar-96 Research SABZ 45.256 136.761 60 F Neg (1:4) 
PT001 Amur tiger 15-Mar-98 Research SABZ 45.163 136.781 84 F Neg (1:4) 
PT003 Amur tiger 20-Mar-97 Research SABZ 44.947 136.106 96 F Neg (1:16)* 
PT003 Amur tiger 27-Apr-95 Research SABZ 44.941 136.235 72 F Neg (1:4) 
PT003 Amur tiger 11-Oct-97 Research SABZ 44.955 136.204 96 F Neg (1:4) 
PT004 Amur tiger 08-Nov-92 Research SABZ 45.350 136.468 60 F Neg (1:4) 
PT008 Amur tiger 22-Nov-92 Research SABZ 44.926 136.353 6 F Neg (1:4) 
PT009 Amur tiger 22-Nov-92 Research SABZ 44.926 136.353 6 M Neg (1:4) 
PT014 Amur tiger 25-Apr-93 Research SABZ 45.340 136.464 NR F Neg (1:4) 
PT015 Amur tiger 21-Dec-95 Research SABZ 44.916 136.480 144 F Neg (1:4) 
PT016 Amur tiger 28-Mar-96 Research SABZ 44.880 136.361 60 M Neg (1:4) 
PT016 Amur tiger 10-Mar-98 Research SABZ 44.971 136.499 84 M Neg (1:4) 
PT017 Amur tiger 12-Mar-94 Conflict SABZ 45.112 136.538 NR M Neg (1:4) 
PT018 Amur tiger 27-Apr-94 Research Non-study 45.021 135.958 10 M Neg (1:4) 
PT018 Amur tiger 02-May-95 Research Non-study 44.686 135.681 22 M Neg (1:4) 
PT019 Amur tiger 13-Oct-94 Research SABZ 45.066 135.954 16 M Neg (1:4) 
PT020 Amur tiger 19-Mar-98 Research SABZ 44.970 136.190 144 M Neg (1:4) 
PT020 Amur tiger 26-Feb-00 Research SABZ 44.970 136.428 168 M Neg (1:4) 
PT022 Amur tiger 18-Jun-96 Research SABZ 44.703 136.048 42 M Neg (1:4) 
PT022 Amur tiger 15-Mar-97 Research Non-study 44.570 135.810 48 M Neg (1:4) 
PT023 Amur tiger 18-Oct-96 Research SABZ 45.543 136.505 14 F Neg (1:4) 
PT025 Amur tiger 20-Nov-97 Research SABZ 44.940 136.244 18 F Neg (1:4) 
PT026 Amur tiger 23-Nov-97 Research SABZ 44.949 136.206 18 F Neg (1:4) 
PT035 Amur tiger 20-Mar-02 Research SABZ 44.910 136.351 108 F Neg (1:16)* 
PT035 Amur tiger 09-Apr-06 Research SABZ 44.915 136.506 156 F Neg (1:16)* 
PT035 Amur tiger 21-Oct-99 Research SABZ 44.928 136.371 72 F Neg (1:4) 
PT037 Amur tiger 17-Nov-99 Research SABZ 44.925 136.334 96 F Neg (1:4) 
PT037 Amur tiger 20-Nov-03 Research SABZ 44.930 136.214 144 F Neg (1:4) 
PT040 Amur tiger 15-Oct-00 Research SABZ 44.949 136.206 72 M Pos (1:128) 



 

PT041 Amur tiger 22-Nov-00 Conflict SABZ 45.042 136.588 24 M Neg (1:4) 
PT043 Amur tiger 09-Dec-00 Conflict Non-study 46.446 135.837 24 M Pos (1:256) 
PT045 Amur tiger 16-Jan-01 Conflict Non-study 46.010 134.164 6 M Neg (1:4) 
PT046 Amur tiger 16-Jan-01 Conflict Non-study 46.010 134.164 6 M Pos (1:64) 
PT047 Amur tiger 18-Feb-01 Conflict SABZ 44.815 136.106 24 M Neg (1:4) 
PT048 Amur tiger 17-Mar-01 Conflict Non-study 46.899 134.446 150 M Neg (1:4) 
PT049 Amur tiger 22-May-01 Research SABZ 44.942 136.316 36 M Neg (1:4) 
PT049 Amur tiger 05-Jun-05 Research SABZ 44.880 136.361 90 M Neg (1:8)* 
PT050 Amur tiger 01-Jun-01 Research SABZ 44.926 136.353 90 M Neg (1:4) 
PT051 Amur tiger 04-Jul-01 Conflict Non-study 49.423 136.536 24 F Neg (1:4) 
PT054 Amur tiger 06-Oct-02 Conflict SABZ 45.042 136.588 4 F Neg (1:4) 
PT055 Amur tiger 07-Oct-07 Research SABZ 44.896 136.336 72 F Pos (1:128) 
PT055 Amur tiger 24-Oct-02 Research SABZ 44.946 136.206 15 F Neg (1:4) 
PT056 Amur tiger 28-Oct-05 Research SABZ 44.897 136.515 52 F Neg (1:8)* 
PT056 Amur tiger 24-Oct-02 Research SABZ 44.948 136.326 16 F Neg (1:4) 
PT056 Amur tiger 24-Mar-10 Research SABZ 44.963 136.490 108 F Pos (1:128) 
PT057 Amur tiger 07-Nov-02 Conflict SABZ 44.926 136.353 12 M Neg (1:4) 
PT058 Amur tiger 15-Dec-02 Research SABZ 44.925 136.484 18 M Neg (1:4) 
PT060 Amur tiger 15-May-03 Research SABZ 45.008 136.497 54 M Neg (1:4) 
PT061 Amur tiger 26-Nov-03 Conflict Non-study 46.711 134.036 30 F Pos (1:256) 
PT061 Amur tiger 03-Dec-03 Conflict Non-study 46.711 134.036 30 F Pos (1:256) 
PT061 Amur tiger 14-Dec-03 Conflict Non-study 46.711 134.036 30 F Pos (1:128) 
PT062 Amur tiger 22-Feb-04 Research Non-study 44.866 134.783 96 M Pos (1:16) 
PT063 Amur tiger 30-Apr-04 Research SABZ 44.925 136.334 36 M Pos (1:64) 
PT064 Amur tiger 24-May-04 Research SABZ 44.936 136.554 12 M Neg (1:4) 
PT067 Amur tiger 16-Aug-04 Research SABZ 44.799 136.415 1 F Neg (1:16)* 
PT069 Amur tiger 17-Sep-04 Research SABZ 44.917 136.494 15 M Neg (1:8)* 
PT071 Amur tiger 17-Mar-05 Research Non-study 43.819 132.172 66 M Neg (1:4) 
PT074 Amur tiger 11-Oct-05 Research SABZ 45.010 136.583 1 F Neg (1:4) 
PT075 Amur tiger 28-Oct-05 Research SABZ 44.897 136.518 15 F Neg (1:4) 
PT079 Amur tiger 13-Oct-06 Research SABZ 44.928 136.558 13 F Pos (1:128) 
PT081 Amur tiger 13-Oct-06 Research SABZ 44.928 136.559 13 F Pos (1:256) 



 

PTI339 Amur tiger 26-Oct-06 Research Southwest 43.498 131.556 168 M Pos (1:8) 
PTI340 Amur tiger 08-Nov-06 Research Southwest 43.499 131.535 108 F Neg (1:4) 
PTI341 Amur tiger 10-Nov-06 Research Southwest 43.498 131.556 60 M Neg (1:8)* 
PT085 Amur tiger 14-Oct-07 Research SABZ 45.023 136.205 96 M Pos (1:32) 
PT088 Amur tiger 03-May-08 Research SABZ 44.930 136.555 12 M Pos (1:32) 
PT089 Amur tiger 23-May-08 Research SABZ 44.930 136.557 12 M Pos (1:128) 
PT094 Amur tiger 04-Jun-09 Research SABZ 44.941 136.192 60 F Pos (1:64) 
PT095 Amur tiger 01-Nov-09 Research SABZ 45.315 136.479 60 M Neg (1:16)* 
PT096 Amur tiger 07-Nov-09 Research SABZ 45.318 136.482 24 M Neg (1:16)* 
PT097 Amur tiger 07-Nov-09 Research SABZ 45.317 136.479 24 F Neg (1:16)* 
PT100 Amur tiger 05-Nov-10 Research SABZ 44.928 136.206 48 M Neg (1:16)* 
PT100 Amur tiger 17-Nov-11 Research Non-study 45.022 135.957 60 M Neg (1:8)* 
PT112 Amur tiger 05-Jun-11 Conflict Non-study 47.279 134.460 19 F Neg (1:8)* 
PT113 Amur tiger 14-Oct-11 Research Southwest 43.494 131.561 108 M Pos (1:64) 
PT114 Amur tiger 21-Oct-11 Research SABZ 44.909 136.356 30 F Pos (1:256) 
PT115 Amur tiger 29-Oct-11 Research Southwest 43.501 131.539 54 M Pos (1:64) 
PT117 Amur tiger 30-Aug-12 Conflict Non-study 47.146 136.094 30 F Neg (1:8)* 
PT124 Amur tiger 28-Aug-13 Conflict Non-study 46.858 134.447 11 F Neg (1:8)* 
PT124 Amur tiger 21-Dec-13 Conflict Non-study 46.858 134.447 13.5 F Neg (1:8)* 
PT125 Amur tiger 29-Aug-13 Conflict Non-study 46.858 134.447 9.5 F Pos (1:64) 
PT125 Amur tiger 21-Dec-13 Conflict Non-study 46.858 134.447 15 F Pos (1:32) 
Tga 003 Amur tiger 02-Feb-14 Sick Non-study 44.563 133.516 96 M Neg (1:8)* 
Tiger Nov-14 Amur tiger 14-Nov-14 Conflict Non-study 47.450 134.932 30 M Neg (1:4) 
Ustin Amur tiger 21-Dec-13 Conflict Non-study 44.240 135.225 12 M Neg (1:4) 
Borya Amur tiger 21-Dec-13 Conflict Non-study 44.563 133.516 12 M Pos (1:128) 
Kuzya Amur tiger 22-Dec-13 Conflict Non-study 44.563 133.516 12 M Pos (1:64) 
PPO1 Far Eastern leopard 23-Jun-93 Research Southwest 43.095 131.558 36 F Pos (1:64) 
PPO2 Far Eastern leopard 17-Nov-93 Research Southwest 43.101 131.556 66 M Neg (1:4) 
PPO3 Far Eastern leopard 21-Apr-94 Research Southwest 43.512 131.536 NR M Neg (1:4) 
PPO5 Far Eastern leopard 09-Aug-94 Research Southwest 43.096 131.558 48 F Pos (1:256) 
PPO7 Far Eastern leopard 26-Apr-96 Research Southwest 43.030 131.406 NR U Neg (1:4) 
PPO6 Far Eastern leopard 07-Apr-97 Research Southwest 43.030 131.406 NR U Neg (1:4) 



 

PPA835 Far Eastern leopard 29-Oct-06 Research Southwest 43.484 131.574 156 M Neg (1:4) 
PPA836 Far Eastern leopard 02-Nov-06 Research Southwest 43.503 131.537 78 M Neg (1:8)* 
PPA835 Far Eastern leopard 27-Apr-07 Research Southwest 43.437 131.674 156 M Neg (1:4) 
PPA840 Far Eastern leopard 15-Oct-07 Research Southwest 43.445 131.598 30 F Neg (1:4) 
PPA836 Far Eastern leopard 18-Oct-07 Research Southwest 43.451 131.545 90 M Neg (1:4) 
PPA836 Far Eastern leopard 08-Oct-08 Research Southwest 43.438 131.480 102 M Neg (1:4) 
PPA841 Far Eastern leopard 18-Oct-08 Research Southwest 43.438 131.480 108 F Neg (1:4) 
LL01 Eurasian lynx 30-Oct-10 Research SABZ 44.963 136.183 7 F Neg (1:4) 
LL03 Eurasian lynx 16-Mar-01 Research Non-study 47.379 135.613 12 M Neg (1:4) 
LL05 Eurasian lynx 13-Feb-02 Research SABZ 44.958 136.511 66 M Pos (1:16) 
LL06 Eurasian lynx 29-Mar-02 Research SABZ 44.912 136.518 36 M Neg (1:4) 
LL07 Eurasian lynx 23-Nov-05 Research SABZ 44.917 136.330 NR M Neg (1:4) 
LL10 Eurasian lynx 31-Oct-10 Research SABZ 45.015 136.186 84 F Neg (1:4) 
LL11 Eurasian lynx 02-Oct-11 Research Non-study 45.024 135.960 36 M Neg (1:4) 
UT009 Asiatic Black Bear 19-May-94 Research SABZ 45.021 135.958 48 M Neg (1:16)* 
UT009 Asiatic Black Bear 27-May-00 Research SABZ 45.013 135.955 144 M Neg (1:16)* 
UT014 Asiatic Black Bear 03-Jun-95 Research SABZ 45.023 135.957 48 M Neg (1:32)* 
UT015 Asiatic Black Bear 19-Jun-95 Research SABZ 45.030 135.958 54 M Neg (1:32)* 
UT016 Asiatic Black Bear 27-Jun-95 Research SABZ 45.023 135.968 66 M Neg (1:16)* 
UT028 Asiatic Black Bear 19-Apr-97 Research SABZ 45.043 136.627 16 M Neg (1:16)* 
UT050 Asiatic Black Bear 07-Jun-00 Research SABZ 45.025 135.957 108 F Neg (1:16)* 
UT053 Asiatic Black Bear 10-Nov-00 Research SABZ 44.926 136.223 66 F Neg (1:16)* 
UT055 Asiatic Black Bear 29-May-01 Research SABZ 44.903 136.335 42 M Neg (1:16)* 
UT058 Asiatic Black Bear 08-Jun-01 Research SABZ 44.906 136.332 90 M Neg (1:16)* 
UT058 Asiatic Black Bear 10-Oct-01 Research SABZ 44.940 136.104 60 F Neg (1:16)* 
UT060 Asiatic Black Bear 21-Oct-01 Research Southwest 43.629 132.538 11 F Neg (1:16)* 
UT061 Asiatic Black Bear 29-Oct-01 Research SABZ 44.939 136.102 162 M Neg (1:16)* 
UT064 Asiatic Black Bear 02-May-01 Research SABZ 44.936 136.216 108 M Neg (1:16)* 
UT066 Asiatic Black Bear 12-Oct-02 Research SABZ 44.904 136.333 84 M Neg (1:16)* 
UT067 Asiatic Black Bear 20-Oct-02 Research SABZ 44.922 136.218 126 M Neg (1:4) 
UT086 Asiatic Black Bear 04-Jun-07 Research SABZ 44.896 136.344 66 M Pos (1:256) 
UT093 Asiatic Black Bear 03-Jun-07 Research SABZ 44.902 136.347 48 F Pos (1:4) 



 

UT098 Asiatic Black Bear 15-May-09 Research SABZ 45.317 136.481 84 M Neg (1:16)* 
UT106 Asiatic Black Bear 29-Sep-11 Research Southwest 43.411 131.599 84 F Neg (1:8)* 
UT107 Asiatic Black Bear 30-Oct-11 Research Southwest 43.470 131.553 NR F Neg (1:8)* 
UT114 Asiatic Black Bear 10-Aug-93 Research SABZ 44.939 136.198 NR M Neg (1:8)* 
UT116 Asiatic Black Bear 09-Sep-93 Research SABZ 44.890 136.337 NR M Neg (1:8)* 
UT201 Asiatic Black Bear 09-Aug-93 Research Southwest 43.341 131.565 216 M Neg (1:32)* 
UT202 Asiatic Black Bear 10-Oct-93 Research Southwest 43.338 131.566 132 F Pos (1:8) 
UT99 Asiatic Black Bear 30-Sep-09 Research Southwest 43.411 131.599 NR Unknown Neg (1:4) 
UTH11 Asiatic Black Bear 18-Oct-07 Research Southwest 43.457 131.590 60 M Neg (1:16)* 
UA007 Brown Bear 05-Jul-93 Research SABZ 45.311 136.480 108 M Pos (1:32) 
UA010 Brown Bear 19-May-94 Research SABZ 45.013 135.954 180 M Neg (1:16)* 
UA029 Brown Bear 29-May-97 Research SABZ 44.929 136.558 48 F Neg (1:32)* 
UA043 Brown Bear 21-Oct-99 Research SABZ 44.911 136.330 180 F Neg (1:16)* 
UA045 Brown Bear 31-Oct-99 Research SABZ 44.917 136.330 96 M Neg (1:8)* 
UA046 Brown Bear 31-Oct-99 Research SABZ 44.897 136.344 108 F Neg (1:16)* 
UA046 Brown Bear 17-Oct-02 Research SABZ 44.891 136.336 144 F Neg (1:8)* 
UA056 Brown Bear 31-May-01 Research SABZ 44.897 136.336 30 F Neg (1:32)* 
UA082 Brown Bear 31-May-04 Research SABZ 44.930 136.558 36 M Neg (1:16)* 
UA099 Brown Bear 01-Oct-09 Research SABZ 45.243 136.482 78 M Neg (1:8)* 
UA100 Brown Bear 04-Oct-09 Research SABZ 45.244 136.478 84 F Neg (1:8)* 
UA101 Brown Bear 15-Oct-10 Research SABZ 44.980 136.187 42 F Neg (1:16)* 
UA113 Brown Bear 19-Jul-93 Research SABZ 45.411 136.823 132 M Neg (1:128)* 
UA115 Brown Bear 03-Sep-93 Research SABZ 45.000 136.171 30 M Neg (1:16)* 
UA117 Brown Bear 10-Sep-93 Research SABZ 45.042 136.234 NR M Neg (1:16)* 
UA118 Brown Bear 27-Apr-94 Research SABZ 45.021 135.959 240 M Neg (1:8)* 
UA121 Brown Bear 31-May-94 Research SABZ 45.006 135.950 NR M Neg (1:8)* 
UA122 Brown Bear 05-Jun-94 Research SABZ 45.008 135.949 NR F Neg (1:16)* 
UA123 Brown Bear 28-Oct-94 Research SABZ 45.349 136.444 96 M Neg (1:16)* 
UT104 Brown Bear 23-Sep-11 Research Non-study 45.026 135.962 120 M Pos (1:64) 
UT105 Brown Bear 12-Oct-11 Research Non-study 45.006 135.953 72 M Neg (1:8)* 

*Cytotoxicity prevented assessment of neutralization at higher concentrations than the titre indicated. 
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Appendix XXII. Mesocarnivore raw serology results 

 

Virus neutralization (VN) titers for mesocarnivores sampled from 2005 to 2014 in 

Primorskii Krai study areas Southwest Primorskii (SW), Lazovskii (LZ) and Sikhote-Alin 

Biosphere Zapovednik (SZ). Details of individual animals include age (juvenile – JV, 

subadult – SA, adult – AD, old – OD, unknown – U), and sex (male – M, female – F, or 

unknown – U). Virus neutralization titres against the Bussell strain of canine distemper 

virus are reported with negative samples (Neg) reflecting a titre lower than 1:8.



 

Animal identity Species Date 
Study 
area Latitude Longitude Age Sex VN titre 

Badger-007 Asian badger 16-Apr-08 LZ 43.011 133.728 AD M Neg (1:8) 
Badger-010 Asian badger 14-May-08 LZ 42.872 133.792 JV M Neg (1:8) 
Badger-011 Asian badger 12-Oct-08 LZ 43.384 133.970 AD F Neg (1:8) 
Badger-033 Asian badger 25-Mar-09 LZ 42.872 133.792 SA M Neg (1:8) 
Badger-037 Asian badger 08-May-09 LZ 43.011 133.728 AD F Neg (1:8) 
MM#001 Asian badger 13-Oct-13 LZ 42.872 133.792 AD F Neg (1:8) 
MM#002 Asian badger 14-Oct-13 LZ 42.864 133.786 SA M Neg (1:8) 
RU-0009 Asian badger 15-Oct-13 LZ 43.036 134.160 AD F Neg (1:8) 
MM#003 Asian badger 15-Oct-13 LZ 42.872 133.792 SA M Neg (1:8) 
MM#004 Asian badger 15-Oct-13 LZ 42.876 133.791 AD M Neg (1:8) 
RU-0010 Asian badger 18-Oct-13 LZ 43.035 134.155 JV M Neg (1:8) 
RU-0012 Asian badger 21-Oct-13 LZ 43.034 134.156 AD M Neg (1:8) 
RU-0013 Asian badger 21-Oct-13 LZ 43.030 134.147 AD M Neg (1:8) 
MM#005 Asian badger 25-Oct-13 LZ 42.864 133.786 AD F Pos (1:11) 
RU-0014 Asian badger 05-Nov-13 LZ 43.014 134.127 AD M Neg (1:8) 
BADGER 2013 Asian badger 24-Jun-13 SZ 45.037 136.632 U U Neg (1:8) 
RU-0020 Asian badger 23-Apr-14 SZ 44.972 136.554 AD M Pos (1:11) 
RU-0021 Asian badger 24-Apr-14 SZ 44.977 136.586 AD M Neg (1:8) 
RU-0022 Asian badger 25-Apr-14 SZ 44.979 136.587 AD M Neg (1:8) 
RU-0023 Asian badger 05-May-14 SZ 44.966 136.532 U M Pos (1:181) 
RU-0024 Asian badger 08-May-14 SZ 44.977 136.586 U M Pos (1:16) 
RU-0025 Asian badger 19-May-14 SZ 44.960 136.528 U F Neg (1:8) 
RU-0026 Asian badger 19-May-14 SZ 44.943 136.480 U F Neg (1:8) 
MML44 Asian badger 15-May-07 SW 43.457 131.590 U U Pos (1:11) 
MML47 Asian badger 11-Oct-07 SW 43.457 131.590 SA M Neg (1:8) 



 

MML48 Asian badger 12-Oct-07 SW 43.457 131.590 U U Neg (1:8) 
MML49 Asian badger 12-Oct-07 SW 43.457 131.590 U F Neg (1:4) 
MML50 Asian badger 12-Oct-07 SW 43.457 131.590 U M Neg (1:8) 
MML51 Asian badger 15-Oct-07 SW 43.457 131.590 U U Bacteria 
MML53 Asian badger 24-Apr-08 SW 43.457 131.590 AD M Neg (1:8) 
MML54 Asian badger 25-Apr-08 SW 43.457 131.590 AD F Neg (1:8) 
MML55 Asian badger 28-Apr-08 SW 43.414 131.607 SA F Neg (1:8) 
MML56 Asian badger 06-May-08 SW 43.414 131.607 SA F Neg (1:8) 
MML57 Asian badger 07-May-08 SW 43.414 131.607 U F Pos (1:11) 
MML58 Asian badger 12-May-08 SW 43.414 131.607 AD M Pos (1:11) 
MML59 Asian badger 12-May-08 SW 43.414 131.607 U F Neg (1:8) 
MML60 Asian badger 16-May-08 SW 43.414 131.607 AD F Neg (1:8) 
MML61 Asian badger 04-Oct-08 SW 43.410 131.621 SA M Neg (1:8) 
MML63 Asian badger 06-Oct-08 SW 43.410 131.621 SA F Neg (1:8) 
MML62 Asian badger 07-Oct-08 SW 43.410 131.621 AD F Neg (1:8) 
MML64 Asian badger 11-Oct-08 SW 43.410 131.621 OD F Neg (1:8) 
MML65 Asian badger 26-Oct-08 SW 43.410 131.621 U M Neg (1:8) 
MML66 Asian badger 04-Nov-08 SW 43.410 131.621 U F Neg (1:8) 
RU-0016 Sable 09-Nov-13 LZ 43.015 134.116 JV M Neg (1:8) 
RU-0017 Sable 13-Nov-13 LZ 43.015 134.116 JV M Neg (1:8) 
MSB4 Siberian weasel 31-Oct-07 SW 43.457 131.590 AD F Neg (1:32) 
MSB7 Siberian weasel 28-Nov-07 SW 43.457 131.590 U U Neg (1:32)* 
Mink-004 American mink 20-Mar-08 LZ 43.015 134.122 AD M Neg (1:8) 
MVI11 American mink 29-Apr-08 SW 43.414 131.607 U F Neg (1:16) 
L CAT 009 Leopard cat 05-May-09 LZ 42.873 133.793 OD M Neg (1:4) 
L CAT #39 Leopard cat 23-May-09 LZ 43.013 133.732 SA F Neg (1:4) 
RU-0001 Leopard cat 08-May-13 LZ 43.015 134.121 AD M Pos (1:724) 
RU-0004 Leopard cat 12-May-13 LZ 43.015 134.121 AD F Neg (1:8) 



 

RU-0007 Leopard cat 19-May-13 LZ 43.034 134.156 AD F Neg (1:8) 
RU-0011 Leopard cat 18-Oct-13 LZ 43.018 134.127 AD M Neg (1:8) 
PB#001 Leopard cat 31-Oct-13 LZ 42.873 133.795 AD M Pos (1:16) 
RU-0015 Leopard cat 07-Nov-13 LZ 43.015 134.116 AD M Neg (1:8) 
Pb#003 Leopard cat 11-Nov-13 LZ 42.866 133.782 AD M Neg (1:8) 
PBE#002 Leopard cat 11-Nov-13 LZ 42.874 133.802 JV M Neg (1:8) 
PBE197 Leopard cat 07-Nov-06 SW 43.420 131.704 U M Neg (1:4) 
PBE211 Leopard cat 03-Dec-07 SW 43.409 131.714 OD M Neg (1:4) 
PBE213 Leopard cat 22-May-08 SW 43.412 131.744 SA M Pos (1:11) 
PBE214 Leopard cat 22-Oct-08 SW 43.410 131.621 SA M Neg (1:8) 
PBE215 Leopard cat 04-Nov-08 SW 43.408 131.717 AD F Neg (1:8) 
L CAT #46 Leopard cat 24-Feb-10 SW 43.455 131.773 AD U Neg (1:4) 
RaccoonDog-006 Raccoon dog 31-Mar-08 LZ 43.015 134.122 SA M Neg (1:8) 
RaccoonDog-008 Raccoon dog 03-May-08 LZ 42.873 133.794 AD F Neg (1:8) 
RaccoonDog-001 Raccoon dog 23-Sep-08 LZ 43.384 133.970 SA F Neg (1:8) 
RaccoonDog-003 Raccoon dog 27-Sep-08 LZ 43.384 133.970 OD F Neg (1:8) 
RaccoonDog-004 Raccoon dog 30-Sep-08 LZ 43.384 133.970 JV F Neg (1:8) 
RU-0002 Raccoon dog 08-May-13 LZ 43.034 134.157 SA M Pos (1:45) 
RU-0006 Raccoon dog 18-May-13 LZ 43.025 134.136 AD M Neg (1:8) 
NP#005 Raccoon dog 12-Oct-13 LZ 42.864 133.782 AD M Neg (1:8) 
RU-0008 Raccoon dog 15-Oct-13 LZ 43.035 134.155 JV M Neg (1:8) 
NP#007 Raccoon dog 16-Oct-13 LZ 42.875 133.804 AD M Neg (1:8) 
Np#009 Raccoon dog 16-Oct-13 LZ 42.873 133.791 AD M Pos (1:32) 
NP#008 Raccoon dog 16-Oct-13 LZ 42.876 133.807 U U Pos (1:45) 
NP#010 Raccoon dog 03-Nov-13 LZ 42.875 133.762 AD F Pos (1:11) 
Np#011 Raccoon dog 11-Nov-13 LZ 42.880 133.705 AD M Neg (1:8) 
RU-0018 Raccoon dog 13-Nov-13 LZ 43.017 134.126 AD F Neg (1:8) 
R DOG 2005 Raccoon dog 28-May-05 SZ 45.048 136.659 U U Neg (1:8) 



 

RU-0027 Raccoon dog 26-May-14 SZ 44.943 136.480 U F Pos (1:128) 
RU-0028 Raccoon dog 27-May-14 SZ 44.943 136.480 U F Neg (1:32)* 
NPR5 Raccoon dog 17-Oct-07 SW 43.457 131.590 U F Bacteria 
NPR6 Raccoon dog 23-Oct-07 SW 43.457 131.590 U M Pos (1:32) 
NPR7 Raccoon dog 24-Oct-07 SW 43.457 131.590 U F Pos (1:32) 
NPR8 Raccoon dog 27-Oct-07 SW 43.457 131.590 U M Pos (1:64) 
NPR9 Raccoon dog 28-Oct-07 SW 43.457 131.590 U F Pos (1:32) 
NPR10 Raccoon dog 03-Nov-07 SW 43.457 131.590 U M Pos (1:128) 
NPR12 Raccoon dog 04-Nov-07 SW 43.457 131.590 U F Pos (1:32) 
NPR13 Raccoon dog 24-Apr-08 SW 43.414 131.607 U M Neg (1:8) 
NPR14 Raccoon dog 26-Apr-08 SW 43.414 131.607 U F Neg (1:64)* 
NPR15 Raccoon dog 07-Oct-08 SW 43.410 131.621 SA F Pos (1:23) 
NPR16 Raccoon dog 09-Oct-08 SW 43.410 131.621 U M Pos (1:11) 
NPR17 Raccoon dog 09-Oct-08 SW 43.410 131.621 U M Neg (1:32)* 
NPR18 Raccoon dog 11-Oct-08 SW 43.410 131.621 AD F Neg (1:8) 
NPR19 Raccoon dog 11-Oct-08 SW 43.410 131.621 SA F Neg (1:8) 
NPR20 Raccoon dog 21-Oct-08 SW 43.410 131.621 SA F Pos (1:16) 
NPR21 Raccoon dog 26-Oct-08 SW 43.410 131.621 OD U Neg (1:8) 
NPR22 Raccoon dog 04-Nov-08 SW 43.410 131.621 SA M Neg (1:8) 
RU-0019 Red fox 21-Nov-13 LZ 43.379 133.897 AD F Neg (1:8) 
VULPES 2011 Red fox 26-Mar-11 SZ 45.052 136.651 AD U Neg (1:8) 
VVU103 Red fox 28-May-08 SW 43.395 131.745 U U Neg (1:8) 
VVU104 Red fox 29-May-08 SW 43.453 131.753 U U Pos (1:11) 
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Appendix XXIII. Vaccinated dog raw serology 
results 

 

Virus neutralization (VN) titers for vaccinated dogs sampled from 2012 to 2014 in 

Primorskii Krai study areas Southwest Primorskii (SW), Lazovskii (LZ) and Sikhote-Alin 

Biosphere Zapovednik (SZ). Details of individual dogs include age (in months), gender 

(male – M, female – F, or unknown – U), whether owners reported dogs as guard dogs, pet 

dogs, hunting dogs or dogs whether they were taken to forested areas (yes – Y, no – N, or 

unknown – U), source (local – L, non-local – NL, unknown – U). Virus neutralization 

titres against the Bussell strain of canine distemper virus are reported with negative 

samples (Neg) reflecting a titre lower than 1:8. 
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Clf # 001 304 SW Olenevod 24 M U U U U U 11 
Clf # 002 304 SW Olenevod 24 M U U U U U Neg 
Clf # 050 354 SZ Plastun 24 F U U U U U 11 
Clf # 058 413 SZ Terney 18 F N N Y U NL Neg 
Clf # 061 465 SZ Terney 60 M N Y N Y L Neg 
Clf # 063 464 SZ Terney 174 M N N N Y L 64 
Clf # 064 464 SZ Terney 24 F N N N Y L 362 
Clf # 065 458 SZ Terney 126 M N Y N Y NL Neg 
Clf # 099 387 SW Slavyanka 60 M U U U U U 64 
DG-0007 420 SZ Terney 144 M Y Y N U NL 64 
DG-0014 425 SZ Terney 144 M Y N N U L 32 
DG-0016 427 SZ Terney 84 M Y Y N U L Neg 
DG-0017 428 SZ Terney 96 M Y Y N U L Neg 
DG-0018 429 SZ Terney 24 M Y N N U NL Neg 
DG-0019 430 SZ Terney 18 M N Y N U NL 5,792 
DG-0021 432 SZ Terney 144 F Y N Y U L Neg 
DG-0028 439 SZ Terney 180 M Y N N N L Neg 
DG-0029 440 SZ Terney 96 M N N Y Y L Neg 
DG-0030 441 SZ Terney 54 M Y Y N Y L Neg 
DG-0032 443 SZ Terney 78 M Y N N Y L Neg 
DG-0033 444 SZ Terney 96 F N N Y Y NL Neg 
DG-0038 448 SZ Terney 36 M Y N N Y NL Neg 
DG-0043 380 SW Slavyanka 4 M N Y N N L 32 
DG-0044 382 SW Slavyanka 120 M Y N N Y L Neg 
DG-0045 382 SW Slavyanka 120 M Y N N Y L 181 
DG-0047 383 SW Slavyanka 120 M Y N N Y L Neg 
DG-0050 21 SW Bezverkhovo 18 M Y Y N N L Neg 
DG-0052 25 SW Bezverkhovo 72 M N N Y Y L 32 
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DG-0053 26 SW Bezverkhovo 12 M Y N N N NL Neg 
DG-0054 26 SW Bezverkhovo 18 M Y N N N NL Neg 
DG-0056 28 SW Bezverkhovo 84 M Y N N N L Neg 
DG-0062 22 SW Bezverkhovo 60 F N Y N Y NL 181 
DG-0064 33 SW Bezverkhovo 18 M Y Y N Y NL Neg 
DG-0067 398 SW Slavyanka 36 M N Y N N NL Neg 
DG-0068 397 SW Slavyanka 156 F N Y N N L Neg 
DG-0070 396 SW Slavyanka 48 M Y Y N Y NL Neg 
DG-0071 399 SW Slavyanka 144 F N Y N N L Neg 
DG-0072 400 SW Slavyanka 48 F N Y N Y NL 362 
DG-0074 306 SW Ovchinnikovo 72 F Y N N Y NL Neg 
DG-0082 253 SW Nezhino 24 F Y N N N NL 256 
DG-0083 254 SW Nezhino 48 M Y N N N NL 11 
DG-0087 257 SW Nezhino 60 F Y N N Y NL 724 
DG-0091 261 SW Nezhino 18 F Y N N N L Neg 
DG-0095 272 SW Olenevod 96 M Y N N Y L Neg 
DG-0109 285 SW Olenevod 120 F Y N N N NL Neg 
DG-0113 289 SW Olenevod 36 M Y N N Y L Neg 
DG-0117 292 SW Olenevod 24 M N Y N N NL Neg 
DG-0118 293 SW Olenevod 96 M Y Y N Y L Neg 
DG-0123 514 SW Timofeevka 72 M Y N N N L Neg 
DG-0124 514 SW Timofeevka 120 M Y N N N L Neg 
DG-0129 519 SW Timofeevka 96 M Y N N Y L 1,448 
DG-0136 60 SW Devatyy-Val 72 M N N Y Y NL 724 
DG-0143 65 SW Devatyy-Val 108 M N Y N N NL 23 
DG-0144 297 SW Olenevod 120 M Y N N N NL Neg 
DG-0148 301 SW Olenevod 48 M Y N N Y L Neg 
DG-0153 403 SW Slavyanka 144 M N Y N N L Neg 
DG-0154 365 SW Razanovka 8 M N Y N Y L Neg 
DG-0156 368 SW Razanovka 36 M Y Y N Y NL Neg 
DG-0159 369 SW Razanovka 24 F N Y N Y NL 32 
DG-0163 358 SW Poyma 168 F Y N N Y NL Neg 
DG-0164 359 SW Poyma 24 F N Y N N NL Neg 
DG-0169 320 SW Perevoznoye 8 F Y N N N L 23 
DG-0170 321 SW Perevoznoye 24 M Y N N N L 23 
DG-0171 321 SW Perevoznoye 168 F Y N N N L 23 
DG-0173 323 SW Perevoznoye 18 F Y Y N N NL 32 
DG-0177 10 SW Baranovskii 18 M N Y N Y NL Neg 
DG-0180 13 SW Baranovskii 96 F Y N N Y L Neg 
DG-0184 17 SW Baranovskii 30 M Y N N Y L Neg 
DG-0186 19 SW Baranovskii 48 F N Y N Y NL 45 
DG-0191 267 SW N. Lvovskoe 60 M N N Y Y L 11 
DG-0195 269 SW N. Lvovskoe 48 M Y N N Y L Neg 
DG-0196 128 SW Krounovka 72 M N N Y N NL Neg 
DG-0203 134 SW Krounovka 204 F N N Y N NL Neg 
DG-0204 135 SW Krounovka 60 M Y Y N N L Neg 
DG-0209 138 SW Krounovka 4 M Y N N N NL 64 
DG-0214 144 LZ Lazo 12 F Y N N Y L Neg 
DG-0215 145 LZ Lazo 36 F N Y N Y NL Neg 
DG-0216 146 LZ Lazo 6 F Y N N N L Neg 
DG-0218 148 LZ Lazo 72 F Y N N Y NL 256 
DG-0220 150 LZ Lazo 12 M N Y N Y NL 512 
DG-0222 152 LZ Lazo 60 M N Y N Y NL 11 
DG-0223 152 LZ Lazo 24 M N Y N N L 91 
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DG-0225 154 LZ Lazo 36 M N Y N Y L Neg 
DG-0227 156 LZ Lazo 156 F N Y N N L Neg 
DG-0228 157 LZ Lazo 9 M U U U Y L Neg 
DG-0230 159 LZ Lazo 18 M Y Y N Y L 45 
DG-0231 159 LZ Lazo 4 M Y Y N Y L Neg 
DG-0234 162 LZ Lazo 72 M N Y N Y NL 11 
DG-0235 162 LZ Lazo 24 M N Y N Y NL 16 
DG-0236 163 LZ Lazo 24 F Y Y N N NL 23 
DG-0241 169 LZ Lazo 24 M Y N N N NL Neg 
DG-0242 169 LZ Lazo 16 M Y N N Y NL 32 
DG-0246 172 LZ Lazo 36 M Y Y N N L Neg 
DG-0251 177 LZ Lazo 120 M Y N N N L Neg 
DG-0256 179 LZ Lazo 10 M Y N N Y L 724 
DG-0257 179 LZ Lazo 96 F N Y N Y L 45 
DG-0278 198 LZ Lazo 24 M N N N Y L Neg 
DG-0281 201 LZ Lazo 12 M N Y N Y L 256 
DG-0284 203 LZ Lazo 48 M Y N N N L 128 
DG-0290 206 LZ Lazo 7 M Y N N N NL Neg 
DG-0294 211 LZ Lazo 48 M Y N N N L Neg 
DG-0296 212 LZ Lazo 24 M Y Y Y Y NL Neg 
DG-0298 214 LZ Lazo 24 F Y N N Y L 128 
DG-0302 217 LZ Lazo 96 M N Y N N NL Neg 
DG-0306 220 LZ Lazo 60 M Y N N Y L Neg 
DG-0343 42 LZ Chis’vodnoye 60 F Y Y N N NL 23 
DG-0346 44 LZ Chis’vodnoye 12 M Y N N N NL Neg 
DG-0347 45 LZ Chis’vodnoye 42 M N N N Y NL 16 
DG-0352 86 LZ Kievka 36 F N Y N N NL 91 
DG-0364 96 LZ Kievka 24 M N N N N NL 11 
DG-0365 97 LZ Kievka 96 F N Y N Y NL 32 
DG-0366 98 LZ Kievka 10 M Y N N N L 128 
DG-0367 98 LZ Kievka 36 F Y N N N NL Neg 
DG-0370 102 LZ Kievka 9 M N Y N Y NL 2,896 
DG-0374 106 LZ Kievka 60 M Y Y N N NL 23 
DG-0376 108 LZ Kievka 144 F Y N N N L Neg 
DG-0377 109 LZ Kievka 48 M Y N N N NL 23 
DG-0392 125 LZ Kishenevka 36 F Y N N N L Neg 
DG-0393 121 LZ Kishenevka 192 M Y Y N Y L Neg 
DG-0407 231 LZ Lazo 36 M Y N N N L Neg 
DG-0414 236 LZ Lazo 36 M N Y N Y U 32 
DG-0418 239 LZ Lazo 144 M Y N N Y L 1,448 
DG-0422 242 LZ Lazo 132 M Y N N Y L Neg 
DG-0426 247 LZ Lazo 96 F N Y N Y NL Neg 
DG-0431 250 LZ Lazo 120 F U U U Y L 512 
DG-0432 250 LZ Lazo 42 F U U U Y NL 64 
DG-0434 328 SZ Plastun 96 M Y Y N N L 11 
DG-0435 328 SZ Plastun 60 F Y Y N N L 16 
DG-0436 329 SZ Plastun 6 M Y Y N Y L 11 
DG-0441 333 SZ Plastun 8 M Y Y N Y L 11 
DG-0448 466 SZ Terney 18 M N N Y Y L Neg 
DG-0449 467 SZ Terney 24 M Y N N N NL Neg 
DG-0454 473 SZ Terney 24 M N N N Y NL 11 
DG-0462 339 SZ Plastun 12 M Y Y N Y L 11 
DG-0463 339 SZ Plastun 24 M Y Y N Y L 11 
DG-0464 339 SZ Plastun 4 F Y Y N Y L 11 
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DG-0465 339 SZ Plastun 120 M Y Y N Y L 45 
DG-0466 339 SZ Plastun 120 F Y Y N Y L Neg 
DG-0467 346 SZ Plastun 24 F Y Y N N L 23 
DG-0474 481 SZ Terney 48 M N Y N Y NL 16 
DG-0476 478 SZ Terney 36 M N Y N Y L 16 
DG-0481 477 SZ Terney 36 M Y N N N L 45 
DG-0483 479 SZ Terney 18 M N Y N N NL 256 
DG-0484 481 SZ Terney 72 F N Y N Y L 16 
DG-0489 485 SZ Terney 6 F N Y N N NL 64 
DG-0496 409 SZ Taejnoye 84 F Y N N N NL 64 
DG-0499 349 SZ Plastun 16 M N Y N Y L Neg 
DG-0500 351 SZ Plastun 60 F N Y N Y NL 128 
DG-0508 352 SZ Plastun 180 F N Y N Y L 128 
DG-0509 509 SZ Terney 72 F Y N N Y L 23 
DG-0510 509 SZ Terney 36 M Y N N Y U 45 
DG-0524 498 SZ Terney 24 M N Y N Y NL 91 
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Appendix XXIV. Unvaccinated dog raw serology 
results 

 

Virus neutralization (VN) titers for unvaccinated dogs sampled from 2012 to 2014 in 

Primorskii Krai study areas Southwest Primorskii (SW), Lazovskii (LZ) and Sikhote-Alin 

Biosphere Zapovednik (SZ). Details of individual dogs include age (in months), gender 

(male – M, female – F, or unknown – U), whether owners reported dogs as guard dogs, pet 

dogs, hunting dogs or dogs whether they were taken to forested areas (yes – Y, no – N, or 

unknown – U), source (local – L, non-local – NL, unknown – U). Virus neutralization 

titres against the Bussell strain of canine distemper virus are reported with negative 

samples (Neg) reflecting a titre lower than 1:8. 
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Clf # 003 302 SW Olenevod 4 M Y N N U U Neg 
Clf # 004 302 SW Olenevod 84 M Y N N U U Neg 
Clf # 005 303 SW Olenevod 84 M Y N N U U Neg 
Clf # 011 512 SW Tikhiy 8 M N N Y U U 11 
Clf # 012 513 SW Tikhiy 24 F N Y N U U Neg 
Clf # 013 520 SW Venevetinovo 18 F Y N N U U Neg 
Clf # 014 521 SW Venevetinovo 30 M Y N N U U Neg 
Clf # 015 263 SW Nezhino 12 F Y N N U U Neg 
Clf # 016 263 SW Nezhino 84 F Y N N U U Neg 
Clf # 018 126 SW Kravtsovka 9 M Y N N U U 2,048 
Clf # 019 127 SW Kravtsovka 36 M Y N N U U Neg 
Clf # 021 82 SW Kazarma-25km 120 M Y N N U U Neg 
Clf # 022 83 SW Kazarma-25km 96 M Y N N U U Neg 
Clf # 023 84 SW Kazarma-25km 108 M Y N N U U Neg 
Clf # 024 84 SW Kazarma-25km 24 M Y N N U U Neg 
Clf # 025 85 SW Kazarma-25km 36 M Y N N U U Neg 
Clf # 026 143 SW Kuchelinovo 6 F U U U U U Neg 
Clf # 028 68 SW Fillipovka 48 F Y N N U U 2,048 
Clf # 029 68 SW Fillipovka 18 M Y N N U U Neg 
Clf # 030 69 SW Fillipovka 12 M Y N N U U Neg 
Clf # 031 69 SW Fillipovka 60 F Y N N U U Neg 
Clf # 032 70 SW Fillipovka 48 M Y N N U U Neg 
Clf # 033 70 SW Fillipovka 72 M Y N N U U Neg 
Clf # 034 70 SW Fillipovka 54 F Y N N U U Neg 
Clf # 035 71 SW Fillipovka 36 F Y N N U U 11 
Clf # 036 522 SW Zanadvorovka 24 M Y N N U U Neg 
Clf # 038 523 SW Zanadvorovka 60 M Y N N U U 181 
Clf # 039 524 SW Zanadvorovka 120 M Y N N U U 45 
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Clf # 040 456 SZ Terney 90 M N Y N U NL Neg 
Clf # 041 459 SZ Terney 120 M Y N N Y L 256 
Clf # 042 461 SZ Terney 12 M Y N N N NL Neg 
Clf # 043 463 SZ Terney 18 M Y N N Y L Neg 
Clf # 044 455 SZ Terney 18 F Y Y N Y L Neg 
Clf # 045 457 SZ Terney 30 M Y N N Y L Neg 
Clf # 046 353 SZ Plastun 18 M N N Y U U Neg 
Clf # 047 353 SZ Plastun 72 M N N Y U U Neg 
Clf # 048 354 SZ Plastun 84 M Y N N U U Neg 
Clf # 049 354 SZ Plastun 42 M Y N N U U 91 
Clf # 051 355 SZ Plastun 36 F Y N N U U Neg 
Clf # 052 356 SZ Plastun 108 M Y N N U U Neg 
Clf # 053 356 SZ Plastun 72 M N Y N U U Neg 
Clf # 054 357 SZ Plastun 66 M Y N N U U Neg 
Clf # 055 357 SZ Plastun 12 M Y N N U U Neg 
Clf # 056 462 SZ Terney 36 M Y N N Y NL Neg 
Clf # 057 460 SZ Terney 24 F N N Y Y NL Neg 
Clf # 059 453 SZ Terney 30 M Y N N Y NL 45 
Clf # 060 453 SZ Terney 11 M Y N N U U Neg 
Clf # 062 452 SZ Terney 18 F Y N N Y L Neg 
Clf # 066 5 SW Barabash 18 M Y N N U U Neg 
Clf # 067 6 SW Barabash 60 M Y N N U U 256 
Clf # 068 6 SW Barabash 36 F Y N N U U Neg 
Clf # 069 7 SW Barabash 6 M Y N N U U Neg 
Clf # 070 8 SW Barabash 36 M Y N N U U Neg 
Clf # 071 9 SW Barabash 36 F Y N N U U 32 
Clf # 072 360 SW Primorskii 72 M Y N N U U 362 
Clf # 073 361 SW Primorskii 48 M Y N N U U 128 
Clf # 075 362 SW Primorskii 96 M Y N N U U 512 
Clf # 076 363 SW Primorskii 12 M Y N N U U Neg 
Clf # 077 364 SW Primorskii 120 F Y N N U U 23 
Clf # 078 312 SW Ovchinnikovo 36 M Y N N U U Neg 
Clf # 079 313 SW Ovchinnikovo 24 F Y N N U U Neg 
Clf # 081 315 SW Ovchinnikovo 38 M N N Y U U Neg 
Clf # 082 316 SW Ovchinnikovo 12 F Y N N U U Neg 
Clf # 083 316 SW Ovchinnikovo 12 M Y N N U U Neg 
Clf # 084 316 SW Ovchinnikovo 120 M N Y N U U 32 
Clf # 085 1 SW Bamburovo 36 M Y N N U U Neg 
Clf # 086 2 SW Bamburovo 60 M Y N N U U Neg 
Clf # 087 3 SW Bamburovo 30 M Y N N U U Neg 
Clf # 088 3 SW Bamburovo 48 M Y N N U U Neg 
Clf # 089 4 SW Bamburovo 96 M Y N N U U Neg 
Clf # 090 374 SW Romashka 84 M Y N N U U Neg 
Clf # 091 374 SW Romashka 18 F Y N N U U Neg 
Clf # 092 375 SW Romashka 11 M Y N N U U Neg 
Clf # 093 376 SW Romashka 24 M N N Y U U Neg 
Clf # 094 377 SW Ryazanovka 156 M N N Y U U Neg 
Clf # 095 377 SW Ryazanovka 36 F N N Y U U 128 
Clf # 096 378 SW Ryazanovka 96 M Y N N U U Neg 
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Clf # 097 378 SW Ryazanovka 72 F Y N N U U Neg 
Clf # 098 385 SW Slavyanka 48 M Y N N U U Neg 
Clf # 100 388 SW Slavyanka 9 F Y N N U U Neg 
Clf # 101 388 SW Slavyanka 122 F Y N N U U 16 
Clf # 102 389 SW Slavyanka 30 M Y N N U U Neg 
Clf # 103 390 SW Slavyanka 12 M Y N N U U 11 
Clf # 104 391 SW Slavyanka 10 M N N Y U U 2,896 
Clf # 105 392 SW Slavyanka 96 M Y N N U U Neg 
Clf # 106 393 SW Slavyanka 48 F Y N N U U Neg 
Clf # 107 394 SW Slavyanka 24 M Y N N U U Neg 
Clf # 108 386 SW Slavyanka 14 U Y N N U U Neg 
Clf # 109 34 SW Bezverkhovo 60 M Y N N U U 512 
Clf # 110 35 SW Bezverkhovo 5 M Y N N U U Neg 
Clf # 111 35 SW Bezverkhovo 36 M Y N N U U 64 
Clf # 112 36 SW Bezverkhovo 12 M Y N N U U Neg 
Clf # 113 37 SW Bezverkhovo 60 M Y N N U U 16 
DG-0001 454 SZ Terney 36 F Y N N N L Neg 
DG-0002 414 SZ Terney 36 M Y N Y U L Neg 
DG-0003 415 SZ Terney 12 M Y Y N U L Neg 
DG-0004 416 SZ Terney 48 M Y N N U L Neg 
DG-0005 417 SZ Terney 18 F N Y N U L 181 
DG-0006 418 SZ Terney 156 M N N Y U L Neg 
DG-0008 419 SZ Terney 12 F Y N N U L Neg 
DG-0009 421 SZ Terney 84 M Y N N U NL Neg 
DG-0010 421 SZ Terney 108 M Y N N U L Neg 
DG-0011 422 SZ Terney 36 M Y N N U L Neg 
DG-0012 423 SZ Terney 60 M Y N N U L Neg 
DG-0013 424 SZ Terney 96 F N Y N U NL Neg 
DG-0015 426 SZ Terney 12 M Y N N U L Neg 
DG-0020 431 SZ Terney 5 M Y N N U L Neg 
DG-0022 433 SZ Terney 120 F Y N N U L Neg 
DG-0023 434 SZ Terney 12 M Y N N U NL 16 
DG-0025 437 SZ Terney 60 F Y Y N U NL 45 
DG-0026 438 SZ Terney 12 F N Y N U L Neg 
DG-0027 436 SZ Terney 144 F N N Y U NL Neg 
DG-0031 442 SZ Terney 24 F Y N N Y L Neg 
DG-0034 445 SZ Terney 120 M N N Y Y NL Neg 
DG-0037 447 SZ Terney 36 M Y Y N Y NL Neg 
DG-0039 449 SZ Terney 24 M N Y N N NL Neg 
DG-0040 450 SZ Terney 36 F N Y N N NL Neg 
DG-0041 450 SZ Terney 6 M N Y N N L Neg 
DG-0042 451 SZ Terney 120 M N Y N Y L Neg 
DG-0046 383 SW Slavyanka 9 F Y N N Y L 11 
DG-0048 384 SW Slavyanka 72 M N Y N N L Neg 
DG-0049 381 SW Slavyanka 5 M Y N N N L Neg 
DG-0051 24 SW Bezverkhovo 12 F Y Y N Y L Neg 
DG-0058 29 SW Bezverkhovo 4 M Y Y N Y L Neg 
DG-0059 30 SW Bezverkhovo 5 F Y N N N NL Neg 
DG-0060 31 SW Bezverkhovo 12 M Y N N Y L Neg 
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DG-0061 32 SW Bezverkhovo 36 M Y N N N L Neg 
DG-0063 23 SW Bezverkhovo 5 M Y N N N L Neg 
DG-0069 395 SW Slavyanka 30 M N Y N N L Neg 
DG-0073 305 SW Ovchinnikovo 12 M Y N N N L Neg 
DG-0075 307 SW Ovchinnikovo 18 M Y N N N L Neg 
DG-0076 308 SW Ovchinnikovo 6 M Y N N N L Neg 
DG-0077 309 SW Ovchinnikovo 12 M Y N N N L Neg 
DG-0078 310 SW Ovchinnikovo 24 M Y N N Y L Neg 
DG-0079 311 SW Ovchinnikovo 60 F N Y N N L Neg 
DG-0080 252 SW Nezhino 120 M N Y N Y L Neg 
DG-0081 252 SW Nezhino 12 M N Y N N L Neg 
DG-0084 255 SW Nezhino 36 F Y N N N NL Neg 
DG-0085 255 SW Nezhino 18 M Y N N N L Neg 
DG-0086 256 SW Nezhino 24 M N Y N N L 32 
DG-0088 259 SW Nezhino 96 M Y Y N N L Neg 
DG-0089 259 SW Nezhino 36 F Y Y N Y L Neg 
DG-0090 260 SW Nezhino 84 F N Y N Y L Neg 
DG-0092 261 SW Nezhino 4 M Y N N N NL Neg 
DG-0093 262 SW Nezhino 48 M N Y N Y NL Neg 
DG-0094 258 SW Nezhino 48 F Y Y N N NL Neg 
DG-0096 273 SW Olenevod 60 M Y N Y Y NL Neg 
DG-0097 274 SW Olenevod 12 M N Y N N L Neg 
DG-0098 275 SW Olenevod 108 F Y N N Y NL Neg 
DG-0099 276 SW Olenevod 12 M Y N N Y NL Neg 
DG-0100 276 SW Olenevod 48 F Y N N Y NL Neg 
DG-0101 277 SW Olenevod 10 M Y N N N NL Neg 
DG-0102 278 SW Olenevod 36 M Y N N N L Neg 
DG-0103 279 SW Olenevod 36 F Y N N N L 11 
DG-0104 280 SW Olenevod 15 F Y Y N N NL Neg 
DG-0105 281 SW Olenevod 36 M Y Y N N L Neg 
DG-0106 282 SW Olenevod 120 M Y N N Y L Neg 
DG-0108 284 SW Olenevod 84 F N Y N N NL Neg 
DG-0110 286 SW Olenevod 4 M Y N N N NL Neg 
DG-0111 287 SW Olenevod 12 F N Y N N L Neg 
DG-0112 288 SW Olenevod 48 M Y N N N NL Neg 
DG-0114 290 SW Olenevod 96 M Y N N Y L Neg 
DG-0115 290 SW Olenevod 84 F Y N N Y L Neg 
DG-0116 291 SW Olenevod 60 M Y N N Y L Neg 
DG-0119 294 SW Olenevod 6 M Y N N Y L Neg 
DG-0120 295 SW Olenevod 6 M Y N N N L Neg 
DG-0121 296 SW Olenevod 4 M N Y N N NL Neg 
DG-0122 404 SW Steklozavodsky 48 M N Y N Y L Neg 
DG-0125 515 SW Timofeevka 156 M Y N N Y NL 23 
DG-0126 516 SW Timofeevka 12 F Y N N Y NL Neg 
DG-0128 518 SW Timofeevka 12 M Y N N N L Neg 
DG-0130 519 SW Timofeevka 24 M Y N N N L Neg 
DG-0131 55 SW Devatyy-Val 36 F N Y N N NL Neg 
DG-0132 56 SW Devatyy-Val 12 M N Y N Y L Neg 
DG-0133 57 SW Devatyy-Val 18 F N Y N Y L Neg 
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DG-0135 59 SW Devatyy-Val 72 F N Y N Y NL Neg 
DG-0137 61 SW Devatyy-Val 48 F N Y N N NL Neg 
DG-0138 62 SW Devatyy-Val 18 M N Y N N L Neg 
DG-0139 63 SW Devatyy-Val 48 M N Y N Y L Neg 
DG-0140 64 SW Devatyy-Val 6 M Y Y N N L Neg 
DG-0141 66 SW Devatyy-Val 18 M Y N N Y U Neg 
DG-0146 299 SW Olenevod 12 M N Y N N L Neg 
DG-0147 299 SW Olenevod 12 M N Y N N L Neg 
DG-0149 300 SW Olenevod 5 M U U U U U Neg 
DG-0150 401 SW Slavyanka 12 F Y Y N N L Neg 
DG-0151 402 SW Slavyanka 60 F Y N N N L Neg 
DG-0152 251 SW Lebedinoe 36 M Y N N N L 32 
DG-0155 370 SW Razanovka 12 M Y N N Y L Neg 
DG-0157 366 SW Razanovka 48 F Y N Y Y NL Neg 
DG-0158 367 SW Razanovka 36 M Y N N Y L 11 
DG-0160 373 SW Razanovka 114 M Y N N Y NL Neg 
DG-0161 372 SW Razanovka 36 M Y N N Y L Neg 
DG-0162 371 SW Razanovka 48 F Y N Y N NL Neg 
DG-0165 405 SW Sukhanovka 36 M Y N N N L Neg 
DG-0166 317 SW Perevoznoye 60 F Y N N Y L Neg 
DG-0167 318 SW Perevoznoye 12 M Y Y N Y L 16 
DG-0168 319 SW Perevoznoye 12 M Y N N Y NL Neg 
DG-0172 322 SW Perevoznoye 72 M Y N N N L Neg 
DG-0174 324 SW Perevoznoye 48 F Y Y N Y L Neg 
DG-0175 325 SW Perevoznoye 10 M Y N N N NL Neg 
DG-0178 11 SW Baranovskii 6 M Y N N N L 11 
DG-0179 12 SW Baranovskii 180 M Y Y N N NL Neg 
DG-0181 15 SW Baranovskii 6 M Y Y N Y NL Neg 
DG-0182 14 SW Baranovskii 24 M Y N N N L Neg 
DG-0183 16 SW Baranovskii 12 M Y N N N L Neg 
DG-0185 18 SW Baranovskii 24 F N N N N L Neg 
DG-0187 20 SW Baranovskii 84 M N Y N Y L 32 
DG-0188 264 SW N. Lvovskoe 48 M N Y N N NL 32 
DG-0190 266 SW N. Lvovskoe 8 M Y N N Y L 32 
DG-0192 268 SW N. Lvovskoe 48 F Y N N N L Neg 
DG-0193 270 SW N. Lvovskoe 48 F Y N N Y NL Neg 
DG-0194 271 SW N. Lvovskoe 24 M Y N N Y L Neg 
DG-0197 129 SW Krounovka 18 M Y N N N L Neg 
DG-0198 130 SW Krounovka 120 M Y N N N L Neg 
DG-0199 130 SW Krounovka 12 F Y N N N L Neg 
DG-0200 131 SW Krounovka 18 M U U U N NL Neg 
DG-0201 132 SW Krounovka 72 F Y N N N L 11 
DG-0202 133 SW Krounovka 84 F Y N N N L Neg 
DG-0205 136 SW Krounovka 96 M Y N N Y L Neg 
DG-0206 137 SW Krounovka 84 M Y N N N NL 32 
DG-0207 137 SW Krounovka 36 M Y N N N NL 32 
DG-0210 139 SW Krounovka 72 F Y N N Y L Neg 
DG-0211 140 SW Krounovka 120 M Y N N Y L Neg 
DG-0213 142 SW Krounovka 24 M Y N N N L Neg 
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DG-0217 147 LZ Lazo 24 M Y N N Y L Neg 
DG-0219 149 LZ Lazo 180 M Y N N N NL Neg 
DG-0221 151 LZ Lazo 12 M Y N N N L Neg 
DG-0224 153 LZ Lazo 36 M Y N N Y L Neg 
DG-0226 155 LZ Lazo 132 F Y N N N NL 256 
DG-0229 158 LZ Lazo 6 M Y Y N N L Neg 
DG-0232 160 LZ Lazo 24 F N Y N Y NL 23 
DG-0233 161 LZ Lazo 144 F N Y N Y L 23 
DG-0237 166 LZ Lazo 24 M Y N N Y L Neg 
DG-0239 168 LZ Lazo 36 M Y N N N L 11 
DG-0240 165 LZ Lazo 36 F Y N N Y NL 11 
DG-0243 170 LZ Lazo 120 F Y N N N L Neg 
DG-0244 171 LZ Lazo 24 M Y N N N L Neg 
DG-0245 172 LZ Lazo 48 F Y Y N N L Neg 
DG-0247 173 LZ Lazo 5 M Y N N Y L Neg 
DG-0248 174 LZ Lazo 24 M Y Y N Y L Neg 
DG-0249 175 LZ Lazo 4 M Y N N N L Neg 
DG-0250 176 LZ Lazo 36 M N Y N N L Neg 
DG-0252 195 LZ Lazo 36 M Y N N Y L Neg 
DG-0253 195 LZ Lazo 48 M Y N N Y L Neg 
DG-0254 178 LZ Lazo 12 M Y Y N N L Neg 
DG-0255 178 LZ Lazo 12 M Y Y N N NL Neg 
DG-0259 181 LZ Lazo 48 M Y Y N N NL Neg 
DG-0260 164 LZ Lazo 36 M N Y N N L Neg 
DG-0261 182 LZ Lazo 84 M N Y N Y L 32 
DG-0262 196 LZ Lazo 144 M Y Y N Y L 128 
DG-0263 183 LZ Lazo 12 M Y Y N Y L Neg 
DG-0264 184 LZ Lazo 96 M Y N N N L Neg 
DG-0265 185 LZ Lazo 108 M N N N N L 181 
DG-0266 186 LZ Lazo 72 M Y Y N N L Neg 
DG-0267 187 LZ Lazo 72 M Y N N N L Neg 
DG-0268 188 LZ Lazo 18 M N Y N Y L 16 
DG-0269 189 LZ Lazo 18 M Y N N N L Neg 
DG-0270 189 LZ Lazo 10 M Y N N N L Neg 
DG-0271 190 LZ Lazo 96 M Y N N Y L Neg 
DG-0272 191 LZ Lazo 120 M Y Y N Y L Neg 
DG-0273 192 LZ Lazo 4 F N Y N N L 64 
DG-0274 193 LZ Lazo 24 M Y N N N L Neg 
DG-0275 194 LZ Lazo 12 M Y N N Y L Neg 
DG-0276 197 LZ Lazo 12 F Y N N N NL 23 
DG-0277 197 LZ Lazo 84 F N Y N N L 91 
DG-0279 199 LZ Lazo 36 M Y Y N N L Neg 
DG-0280 200 LZ Lazo 12 M N Y N N L Neg 
DG-0282 202 LZ Lazo 36 M Y N N Y L Neg 
DG-0283 203 LZ Lazo 6 M N Y N Y L Neg 
DG-0285 204 LZ Lazo 132 F N Y N N NL Neg 
DG-0286 205 LZ Lazo 48 M N Y N N L 11 
DG-0287 205 LZ Lazo 10 M N Y N N L 45 
DG-0288 210 LZ Lazo 60 M Y N N N L 11 
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DG-0289 206 LZ Lazo 4 M Y Y N N L Neg 
DG-0291 207 LZ Lazo 36 M Y N N N L Neg 
DG-0292 208 LZ Lazo 120 M U U U N L 256 
DG-0293 209 LZ Lazo 60 M Y N N Y L 181 
DG-0295 212 LZ Lazo 24 F Y Y N Y L Neg 
DG-0297 213 LZ Lazo 24 F Y N N N NL Neg 
DG-0299 214 LZ Lazo 24 M Y N N Y L Neg 
DG-0300 215 LZ Lazo 108 M Y N N N L Neg 
DG-0301 216 LZ Lazo 60 M Y Y N Y NL Neg 
DG-0303 217 LZ Lazo 36 F N Y N N U Neg 
DG-0304 218 LZ Lazo 24 M N Y N Y L Neg 
DG-0305 219 LZ Lazo 72 M Y Y N Y L 32 
DG-0307 221 LZ Lazo 8 M Y N N N L Neg 
DG-0308 222 LZ Lazo 24 F Y N N N L Neg 
DG-0309 47 LZ Danilchenkovo 60 F Y N N Y L Neg 
DG-0310 48 LZ Danilchenkovo 24 F Y Y N Y L Neg 
DG-0311 48 LZ Danilchenkovo 12 F Y Y N Y L Neg 
DG-0312 49 LZ Danilchenkovo 84 M N Y N Y L Neg 
DG-0313 49 LZ Danilchenkovo 96 F N Y N Y NL Neg 
DG-0314 50 LZ Danilchenkovo 12 M N Y N N NL Neg 
DG-0315 51 LZ Danilchenkovo 48 M Y N N N L Neg 
DG-0317 53 LZ Danilchenkovo 6 U N Y N N L Neg 
DG-0318 54 LZ Danilchenkovo 48 F Y N N N L Neg 
DG-0319 72 LZ Kamenka 72 M Y N N Y L Neg 
DG-0320 73 LZ Kamenka 96 F N N N Y L Neg 
DG-0321 74 LZ Kamenka 108 M Y N N Y NL 128 
DG-0322 74 LZ Kamenka 108 M Y N N Y NL 512 
DG-0323 74 LZ Kamenka 96 M Y N N Y NL 32 
DG-0324 74 LZ Kamenka 60 M Y N N Y U 128 
DG-0325 75 LZ Kamenka 24 M Y N N N NL Neg 
DG-0326 76 LZ Kamenka 5 M N Y N N L Neg 
DG-0327 76 LZ Kamenka 5 F N Y N N L Neg 
DG-0328 77 LZ Kamenka 36 M Y N N N L 64 
DG-0329 81 LZ Kamenka 18 M Y N N N L Neg 
DG-0330 78 LZ Kamenka 60 F Y N N Y L Neg 
DG-0331 78 LZ Kamenka 24 F Y N N Y NL Neg 
DG-0332 79 LZ Kamenka 24 M N Y N N NL Neg 
DG-0333 79 LZ Kamenka 72 M N Y N Y NL Neg 
DG-0334 80 LZ Kamenka 12 F Y N N N L Neg 
DG-0335 80 LZ Kamenka 12 F Y N N N L Neg 
DG-0336 80 LZ Kamenka 12 M Y N N N L Neg 
DG-0337 81 LZ Kamenka 36 M Y N N N L 128 
DG-0338 38 LZ Chistovodnoye 60 M N N Y Y NL 2,048 
DG-0339 38 LZ Chistovodnoye 12 M Y N N N NL Neg 
DG-0340 39 LZ Chistovodnoye 96 M Y N N N U 32 
DG-0341 40 LZ Chistovodnoye 6 F Y N N N NL 32 
DG-0342 41 LZ Chistovodnoye 60 M Y N N N NL 23 
DG-0344 43 LZ Chistovodnoye 12 M N Y N N L 23 
DG-0345 46 LZ Chistovodnoye 12 M Y Y N N NL Neg 
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DG-0348 406 LZ Svobodnoe 48 M Y N N N L Neg 
DG-0349 406 LZ Svobodnoe 60 F Y N N N L 11 
DG-0350 407 LZ Svobodnoe 96 M Y Y N N L 11 
DG-0351 408 LZ Svobodnoe 24 M N Y N N NL Neg 
DG-0353 87 LZ Kievka 42 F N Y N Y L 11 
DG-0354 88 LZ Kievka 60 M Y N N Y NL Neg 
DG-0355 89 LZ Kievka 6 F Y N N N L 11 
DG-0356 90 LZ Kievka 12 M Y Y N N L 11 
DG-0357 91 LZ Kievka 60 M Y N N N L Neg 
DG-0358 92 LZ Kievka 36 F Y N N N NL 32 
DG-0359 93 LZ Kievka 120 M N Y N N L 11 
DG-0360 94 LZ Kievka 12 M N Y N N L 16 
DG-0361 94 LZ Kievka 132 M N Y N N L Neg 
DG-0362 94 LZ Kievka 12 M N Y N N L 1,024 
DG-0363 95 LZ Kievka 72 M Y N N N L 11 
DG-0368 100 LZ Kievka 12 F Y N N N NL Neg 
DG-0369 101 LZ Kievka 84 F Y N N Y NL 32 
DG-0371 103 LZ Kievka 24 M Y N N Y NL 23 
DG-0372 104 LZ Kievka 24 M Y N N N L Neg 
DG-0373 105 LZ Kievka 5 F Y Y N N NL Neg 
DG-0375 107 LZ Kievka 36 M N Y N N NL 91 
DG-0378 110 LZ Kievka 36 F N Y N N NL Neg 
DG-0379 111 LZ Kievka 24 M N Y N N NL Neg 
DG-0380 99 LZ Kievka 24 M Y N N Y L Neg 
DG-0381 112 LZ Kishenevka 24 M Y Y N N L Neg 
DG-0382 112 LZ Kishenevka 12 M Y Y N N L Neg 
DG-0383 113 LZ Kishenevka 120 M U U U N NL 23 
DG-0384 114 LZ Kishenevka 120 M Y N N N L 32 
DG-0385 115 LZ Kishenevka 72 M Y N N Y L 11 
DG-0386 116 LZ Kishenevka 12 F Y N N Y NL Neg 
DG-0387 117 LZ Kishenevka 48 M Y N N N L Neg 
DG-0388 118 LZ Kishenevka 168 M N Y N Y L 16 
DG-0389 119 LZ Kishenevka 180 M Y Y N N L Neg 
DG-0390 120 LZ Kishenevka 96 M Y Y N Y NL Neg 
DG-0391 125 LZ Kishenevka 144 M Y N N N L 256 
DG-0394 122 LZ Kishenevka 36 M N Y N N L 23 
DG-0395 122 LZ Kishenevka 108 M N Y N N L Neg 
DG-0396 122 LZ Kishenevka 72 M N Y N N NL 16 
DG-0397 123 LZ Kishenevka 120 M Y Y N N NL 91 
DG-0398 124 LZ Kishenevka 60 M Y N N N L 11 
DG-0399 223 LZ Lazo 8 M Y N N N L 23 
DG-0400 224 LZ Lazo 60 M Y N N N NL 16 
DG-0401 225 LZ Lazo 96 M N Y N Y L Neg 
DG-0402 226 LZ Lazo 96 M N Y N Y L 91 
DG-0403 227 LZ Lazo 48 M Y N N Y L Neg 
DG-0404 228 LZ Lazo 60 M Y N N N NL Neg 
DG-0405 229 LZ Lazo 30 F N Y N N L 11 
DG-0406 232 LZ Lazo 24 M Y N N N L Neg 
DG-0408 230 LZ Lazo 12 F Y N N Y L 16 



Appendix XXIV  325    325  

Animal 
identity H

ou
se

ho
ld

 
Id

en
tit

y 

S
tu

dy
 a

re
a 

Settlement A
ge

 

G
en

de
r 

G
ua

rd
 d

og
 

C
om

pa
ni

on
 

H
un

tin
g 

do
g 

V
is

its
 fo

re
st

  

S
ou

rc
e 

V
N

 ti
tr

e 

DG-0409 237 LZ Lazo 24 M Y Y N Y L Neg 
DG-0410 238 LZ Lazo 48 M Y N N N L 64 
DG-0411 238 LZ Lazo 12 M Y N N N NL 32 
DG-0412 235 LZ Lazo 30 M Y N N N L Neg 
DG-0413 235 LZ Lazo 120 M Y N N N L 32 
DG-0415 234 LZ Lazo 60 M N Y N Y L 11 
DG-0416 233 LZ Lazo 18 F N Y N N NL 32 
DG-0417 239 LZ Lazo 36 M Y N N Y L Neg 
DG-0419 239 LZ Lazo 24 F Y N N Y L Neg 
DG-0420 240 LZ Lazo 12 F Y N N N NL 256 
DG-0421 241 LZ Lazo 48 M Y N N N NL 32 
DG-0423 243 LZ Lazo 24 M Y Y N Y L Neg 
DG-0424 245 LZ Lazo 24 M Y N N N L Neg 
DG-0425 248 LZ Lazo 24 M Y Y N Y NL 23 
DG-0427 246 LZ Lazo 48 M N Y N N L Neg 
DG-0428 249 LZ Lazo 36 M Y N N N L Neg 
DG-0429 249 LZ Lazo 36 M Y N N N L Neg 
DG-0430 244 LZ Lazo 48 M Y N N N L Neg 
DG-0433 327 SZ Plastun 36 M Y N N N L Neg 
DG-0437 330 SZ Plastun 12 M Y N N N NL Neg 
DG-0438 330 SZ Plastun 144 M Y N N N NL Neg 
DG-0439 331 SZ Plastun 48 F Y N N N NL Neg 
DG-0440 332 SZ Plastun 72 F N N Y Y L Neg 
DG-0442 334 SZ Plastun 36 M Y N N N L Neg 
DG-0443 334 SZ Plastun 12 M Y N N N L Neg 
DG-0444 335 SZ Plastun 132 M N N Y Y L Neg 
DG-0445 348 SZ Plastun 18 M Y N N N L Neg 
DG-0446 337 SZ Plastun 120 M Y N N N L Neg 
DG-0447 336 SZ Plastun 24 F Y N N N L Neg 
DG-0450 468 SZ Terney 24 M N Y N N L Neg 
DG-0451 470 SZ Terney 6 M Y N N N L 23 
DG-0452 471 SZ Terney 180 F N Y N Y L 16 
DG-0453 472 SZ Terney 24 F Y N N N L Neg 
DG-0455 474 SZ Terney 36 M Y N N Y NL Neg 
DG-0456 472 SZ Terney 10 M Y N N N L Neg 
DG-0457 340 SZ Plastun 12 M Y N N Y L 11 
DG-0458 341 SZ Plastun 36 M N Y N Y L 45 
DG-0459 342 SZ Plastun 18 M Y N N N NL 23 
DG-0460 342 SZ Plastun 5 M N Y N N L 11 
DG-0461 343 SZ Plastun 12 M Y Y N Y L Neg 
DG-0468 338 SZ Plastun 12 M Y N N N L 23 
DG-0469 345 SZ Plastun 12 F N Y N N L Neg 
DG-0470 344 SZ Plastun 96 M Y N N N L Neg 
DG-0471 344 SZ Plastun 120 F Y N N N L 16 
DG-0472 347 SZ Plastun 24 M Y N N Y L 16 
DG-0473 480 SZ Terney 96 M Y N N N L 256 
DG-0475 469 SZ Terney 96 M Y N N Y L 23 
DG-0477 474 SZ Terney 72 M Y N N Y L 23 
DG-0478 474 SZ Terney 12 F Y N N Y L 16 



Appendix XXIV  326    326  

Animal 
identity H

ou
se

ho
ld

 
Id

en
tit

y 

S
tu

dy
 a

re
a 

Settlement A
ge

 

G
en

de
r 

G
ua

rd
 d

og
 

C
om

pa
ni

on
 

H
un

tin
g 

do
g 

V
is

its
 fo

re
st

  

S
ou

rc
e 

V
N

 ti
tr

e 

DG-0482 469 SZ Terney 108 M Y N N Y L 32 
DG-0485 475 SZ Terney 8 F Y N N N L 45 
DG-0486 483 SZ Terney 8 M Y N N N L 23 
DG-0487 484 SZ Terney 24 M N Y N N L Neg 
DG-0488 482 SZ Terney 60 F N Y N N L Neg 
DG-0490 486 SZ Terney 36 M N N Y Y L 23 
DG-0491 487 SZ Terney 24 F Y N N N L 362 
DG-0492 410 SZ Taejnoye 12 M Y Y Y Y L 23 
DG-0493 410 SZ Taejnoye 24 F Y Y Y Y L 181 
DG-0494 411 SZ Taejnoye 72 M N N N Y L 32 
DG-0495 412 SZ Taejnoye 78 F N Y N N U 91 
DG-0497 411 SZ Taejnoye 72 F N N N Y L Neg 
DG-0498 350 SZ Plastun 48 M N Y N Y NL 11 
DG-0501 494 SZ Terney 96 F Y N N N L 23 
DG-0502 491 SZ Terney 12 M N Y N Y L 23 
DG-0503 492 SZ Terney 48 M Y N N N L Neg 
DG-0504 489 SZ Terney 84 M Y N N Y L 32 
DG-0505 488 SZ Terney 84 F Y N N Y L 45 
DG-0506 490 SZ Terney 96 F Y N N N L 181 
DG-0507 493 SZ Terney 24 M Y N N Y L 16 
DG-0511 507 SZ Terney 66 M N Y N Y L 45 
DG-0512 511 SZ Terney 30 M Y Y N Y U 16 
DG-0513 505 SZ Terney 48 F N Y N Y L 45 
DG-0514 503 SZ Terney 11 M N N N Y L 23 
DG-0515 502 SZ Terney 48 F N Y N N NL 23 
DG-0517 510 SZ Terney 48 F Y Y N Y L Neg 
DG-0518 510 SZ Terney 72 F Y Y N Y L 16 
DG-0519 508 SZ Terney 108 F N Y N Y NL 16 
DG-0520 504 SZ Terney 144 F Y N N Y L 16 
DG-0521 501 SZ Terney 24 F N Y N Y L 16 
DG-0522 501 SZ Terney 12 M N Y N Y NL Neg 
DG-0523 500 SZ Terney 24 M Y N N N L 45 
DG-0525 498 SZ Terney 132 M N Y N Y L 16 
DG-0526 495 SZ Terney 72 M N Y N N L 16 
DG-0527 496 SZ Terney 48 M Y N N Y L 16 
DG-0528 499 SZ Terney 18 M Y N N N L 11 
DG-0529 506 SZ Terney 48 M Y Y N Y L 16 
DG-0530 497 SZ Terney 120 M Y Y N Y L 45 
DG-0531 497 SZ Terney 24 M Y Y N Y L 16 
Clf # 080 314 SW Ovchinnikovo Unk M Y N N U U 362 
DG-0142 67 SW Devatyy-Val Unk M Y N N Y L Neg 
DG-0189 265 SW N. Lvovskoe Unk M Y Y N N L 23 
DG-0208 138 SW Krounovka Unk F Y N N N L 32 
DG-0316 52 LZ Danilchenkovo Unk M Y Y N N L Neg 
DG-0024 435 SZ Terney 3.5 M N N Y U L Neg 
DG-0065 379 SW Slavyanka 2 M Y N N N L Neg 
DG-0145 298 SW Olenevod 3 M N Y N Y NL Neg 
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Appendix XXV. Table of wildlife serology results 
based on a 1:8 titre cutoff denoting positive 
samples 

 

Results of virus neutralization analyses against canine distemper virus (CDV) for serum 

samples collected from wild carnivores in the Russian Far East between 1992 and 2014. 

Neutralizing antibody titres of 1:8 or higher were considered positive. Seroprevalence is 

given as the number of positive samples expressed as a percentage of sample size, with 

lower and upper 95% binomial confidence intervals (CI). 

Species Positive Sample 
size

Seroprev. 
(%)

Lower CI 
(%)

Upper CI 
(%)

Amur tiger * 21 67 31.3 20.9 44.0
Far Eastern leopard * 2 10 20.0 3.5 55.8
Eurasian lynx * 1 7 14.3 0.8 58.0
Leopard cat 3 16 18.8 5.0 46.3
Asiatic black bear * 2 25 8.0 1.4 27.5
Brown bear * 2 20 10.0 1.8 33.1
Raccoon dog † 14 35 40.0 24.4 57.8
Red fox † 1 4 25.0 1.3 78.1
Sable † 0 2 0.0 0.0 80.2
Siberian weasel † 0 2 0.0 0.0 80.2
American mink † 0 2 0.0 0.0 80.2
Asian badger † 7 43 16.3 7.3 31.3

 Samples tested in Washington State University against CDV Onderstepoort strain. † Samples 
tested in the University of Glasgow using CDV Bussell strain. 
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Appendix XXVI. Selection process for multivariate 
generalized binary logistic regression models 
predicting exposure of tigers to canine distemper 
virus based on Akaike information criterion values 

 

Selection process for multivariate generalized binary logistic regression models predicting 

the exposure of tigers to canine distemper virus based on Akaike information criterion 

(AIC) values. Explanatory variables include aga (AG), gender (GE), study area (SA), 

animal category (CA) and human density (HU). Models were constructed using a forward 

selection process using AIC values assess model quality. Lowest AIC values at each stage 

of model construction are indicated in bold, and final model is highlighted in grey. 

Model variables AIC ∆AIC 
Base 76.91976 0 
AG 78.58473 1.66497 
GE 78.80361 1.88385 
SA 78.97829 2.05853 
CA 78.24981 1.33005 
HU 78.78497 1.86521 
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Appendix XXVII. Selection process for multivariate 
generalized binary logistic regression models 
predicting exposure of unvaccinated domestic 
dogs to canine distemper virus based on Akaike 
information criterion values 

 

Selection process for multivariate generalized binary logistic regression models predicting 

the exposure of tigers to canine distemper virus based on Akaike information criterion 

(AIC) values. Explanatory variables include age (AG), gender (GE), forest visits (FV), 

study area (SA), community type (CA), children in house (CH), people in house (PL), cat 

owner (CO), poultry owner (PO), livestock owner (LO), residence type (RT), guard dog 

(GD), hunting dog (HD), companion dog (CD), and source (SO). Settlement was included 

as a random variable. Models were constructed using a forward selection process using 

AIC values assess model quality. Lowest AIC values at each stage of model construction 

are indicated in bold, and final model is highlighted in grey. 

Model variables AIC ∆AIC 
Base 368.3572 16.0174 
AG 359.7056 7.3658 
GE 370.0466 17.7068 
FV 367.1778 14.838 
SA 360.6175 8.2777 
CT 369.5197 17.1799 
CH 370.3571 18.0173 
PL 369.4637 17.1239 
CO 370.1489 17.8091 
PO 370.2654 17.9256 
LO 368.2278 15.888 
RT 368.3453 16.0055 
GD 366.8586 14.5188 
HT 370.2987 17.9589 
CD 369.6611 17.3213 
SO 369.1047 16.7649 
AG + GE 361.4121 9.0723 
AG + FV 360.1592 7.8194 
AG + SA 352.3398 0 
AG + CT 360.8004 8.4606 
AG + CH 361.635 9.2952 
AG + PL 360.314 7.9742 
AG + CO 361.3231 8.9833 
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AG + PO 361.6598 9.32 
AG + LO 360.3444 8.0046 
AG + RT 360.3317 7.9919 
AG + GD 359.2623 6.9225 
AG + HT 361.699 9.3592 
AG + PT 361.1398 8.8 
AG + SO 360.7173 8.3775 
AG + SA + GE 354.0126 1.6728 
AG + SA + FV 352.817 0.4772 
AG + SA + CT 353.7825 1.4427 
AG + SA + CH 354.2478 1.908 
AG + SA + PL 352.9501 0.6103 
AG + SA + CO 354.1682 1.8284 
AG + SA + PO 353.8418 1.502 
AG	+	SA	+	LO	 353.2041	 0.8643 
AG	+	SA	+	RT	 353.1022	 0.7624 
AG	+	SA	+	GD	 352.5913	 0.2515 
AG	+	SA	+	HT	 354.3366	 1.9968 
AG	+	SA	+	PT	 353.9715	 1.6317 
AG	+	SA	+	SO	 353.0115	 0.6717 
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Glossary and abbreviations 

Allee effect  – A decline in individual fitness at low population size or density, that can 

result in critical population thresholds below which populations decline to 

extinction. 

CD150  – Cluster of differentiation 150 cell receptor, present on B and T-lymphocytes 

and dendritic cells. Serves as the primary receptor used by canine distemper 

virus and other Morbilliviruses during early stages of infection. Also known as 

the signalling lymphocyte activation molecule (SLAM/F1). 

CDV  – Canine distemper virus. 

CITES  – Convention on International Trade in Endangered Species of Wild Fauna and 

Flora, is a multilateral treaty governing the trade in endangered plants and 

animals. 

Critical community size (CCS) – The host population size, below which a disease cannot 

persist in the long term. 

Enzootic  – A state of constant presence of a pathogen within an animal population. 

Epizootic – A temporary state of high prevalence of a pathogen in an animal population. 

Force of infection – The rate at which susceptible individuals acquire an infectious 

disease. 

Incidence – The number of new cases in a particular time interval. 

Maintenance population – Populations of susceptible hosts exceeding the critical 

community size that permits the long-term persistence of a pathogen. 

Maintenance community  – Assemblages of several populations or species of susceptible 

hosts, which collectively exceed the critical community size that permits the 

long-term persistence of a pathogen. 
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Metapopulation – In the epidemiological context, metapopulations consist of multiple 

subpopulations of susceptible hosts that represent patches of ‘habitat’ for 

pathogens, and are loosely connected (e.g. through host movement) to enable 

the dispersal of the infection between patches. 

Nectin-4 – Cellular adhesion molecules found on epithelial cells, which are used by canine 

distemper virus and other Morbilliviruses as receptors for entry into host cells. 

Also known as polioviruslike receptor 4. 

Prevalence – proportion of positive cases in a population at a particular time point. 

PVLR – Cellular adhesion molecules found on epithelial cells, which are used by canine 

distemper virus and other Morbilliviruses as receptors for entry into host cells. 

Also known as nectin 4. 

Reservoir – One or more epidemiologically connected populations or environments in 

which a pathogen can be permanently maintained and from which infection is 

transmitted to the target population. 

R0 –  The reproductive number of a pathogen. The mean number of secondary 

infections arising from an infected individual in a freely mixing, fully 

susceptible population. 

Re  –  Effective reproductive number. The mean number of secondary infections 

arising from an infected individual in a freely mixing, partially susceptible 

population (e.g. where vaccination is practiced). 

SIR/D – Susceptible – Infected – Recovered/Dead. A compartmentalised structure used 

for modelling the epidemiology of short-acting pathogens, for which infections 

either result in the death, or the recovery of the host, with long term immunity. 

SLAM/F1 – Signalling lymphocyte activation molecule cell receptor, present on B and 

T-lymphocytes and dendritic cells. Serves as the primary receptor used by 

canine distemper virus and other Morbilliviruses during early stages of 

infection. Also known as CD150. 
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Zapovednik – The highest protection status given to protected area reserves in Russia and 

the former Soviet countries, where public access is totally restricted. 

 


